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Abstract.

This work presents studies on the angle and mode tuning dependencies of the polarisation
splitting in detuned organic DBR microcavities. The cavity layer has a wedged shape. By varying
the measurement position on the sample, the resonant cavity mode is spectrally shifted with
respect to the centre of the cavity stop band. For the first time, direct measurements of the
dependence of the cavity mode polarisation splitting on mode tuning are carried out. Splitting
values up to 58meV are observed, where the resonant modes reach the stop band edge. This
behaviour is compared with transfer matrix calculations and analytical considerations, which
agree well.

In a second part, considerations about the radius of the resonant modes of organic DBR
microcavities are presented, and the effects of mode growing and spatial mode locking in the laser
regime are studied. The sample is excited with two small spots which are a few µm apart. It is
found that photons from one spot can stimulate emission in the other spot, so that the phase
of the emission from both spots locks in and a supermode forms, resulting in overall coherent
emission. The phase difference between both spots is found to be either 0 or π, depending on
the spot distance, resulting in normal or oblique laser emission.

Zusammenfassung.

Diese Arbeit stellt Untersuchungen über die Abhängigkeit der Polarisationsaufspaltung der
Moden dielektrischer organischer Mikroresonatoren vom Winkel und der Modenstimmung vor. Die
Resonatorschicht besitzt Keilform. Durch Veränderung der Messposition auf der Probe wird die
resonante Kavitätsmode im Vergleich zur Mitte des Resonatorstoppbandes spektral verschoben.
Erstmals wird die Abhängigkeit der Polarisationsaufspaltung von der Modenabstimmung direkt
gemessen. Es werden Aufspaltungen bis zu 58meV beobachtet, wenn die Kavitätsmode den Rand
des Stoppbandes erreicht. Dieses Verhalten wird mit Transfermatrixrechnungen und analytischen
Betrachtungen verglichen, und die Ergebnisse stimmen überein.

In einem zweiten Teil werden Betrachtungen über den Radius der Resonatormoden vorgestellt.
Der Effekt des Anwachsens der Moden und der räumlichen Modenkopplung im Laserregime
werden untersucht. Die Probe wird an zwei Orten, welche wenige µm auseinanderliegen, angeregt.
Es wird beobachtet, dass Photonen, die an der einen Stelle emittiert werden, Emission am anderen
Ort stimulieren können, so dass die Phase der Emission von beiden Stellen einrastet und eine
Supermode entsteht, was kohärente Abstrahlung von beiden Orten bewirkt. Die Phasendifferenz
zwischen beiden angeregten Stellen ist entweder 0 oder π, abhängig von deren Abstand, was zu
Emission in senkrechter oder schräger Richtung führt.



„In unserem Rathaus ist es finster!“ „Stimmt!“ riefen die anderen. Als aber
der Bäcker fragte: „Und woran liegt das?“, wussten sie lange keine Antwort. Bis
der Schneider schüchtern sagte: „Ich glaube, ich hab’s.“ „Nun?“ „In unserm
neuen Rathaus“, fuhr der Schneider bedächtig fort, „ist kein Licht!“ Da sperrten
sie Mund und Nase auf und nickten zwanzigmal. Der Schneider hatte Recht,
Im Rathaus war es finster, weil kein Licht drin war!
Am Abend trafen sie sich beim Ochsenwirt, tranken ein Bier und berat-

schlagten, wie man Licht ins Rathaus hineinschaffen könne. Es wurden eine
ganze Reihe Vorschläge gemacht. Doch sie gefielen ihnen nicht besonders. Erst
nach dem fünften Glas Braunbier fiel dem Hufschmied das Richtige ein. „Das
Licht ist lebendig wie ein Kaninchen“, sagte er nachdenklich. „Und da man
Kaninchen in Käfigen ins Haus trägt, sollten wir’s mit dem Licht genauso
machen!“
„Hurra!“, riefen sie alle. „Das ist die Lösung!“

(Frei aus die Schildbürger [1].)
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1 Introduction.

Overview.

In this work, studies on the cavity modes of planar microcavities are presented. The term
planar denotes that the cavities are homogeneous along the cavity plane, i.e. unstructured.
The investigated cavities contain an optically active organic material, bound by distributed
Bragg reflectors (DBRs) as the cavity mirrors.

This work consists of two parts: In the first part, studies on the polarisation properties
of the cold cavity modes are presented. Cold means that the organic material is excited so
weakly, that the excitation does not change the optical properties of the microcavity. It
is shown that, in general, in a cavity with DBR mirrors, the cavity mode splits into two
modes which are orthogonally polarised. The dependence of this mode splitting on angle
and on cavity thickness is theoretically and experimentally studied.

The spatial shape of the cavity mode, mainly the distribution of the electromagnetic field
in the cavity plane, is an important issue when constructing a laser with these microcavities.
Lasing will only take place if the overall losses are compensated by gain. Wherever the
electric field of the cavity modes penetrates, it is subjected to the absorption of the cavity
material. Further losses occur due to the mirrors (absorption, and transmission to the
outside). All these effects must be compensated by gain to obtain lasing. The excitation
threshold for lasing is reached when the gain, weighted with the electric amplitude of
the photon field and integrated over the cavity, exceeds the overall losses. The spatial
distribution of gain and loss therefore influences how high in the excited regions the
material gain per volume, and so the pumping intensity, has to be in order to achieve
lasing.

The second part thus deals with the size of cold cavity modes; investigated is the spatial
extension of the modes along the cavity plane. Furthermore, the growth of the cavity
modes is discussed for non-cold cavities. Under excitation above the laser threshold, cavity
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modes which overlap may lock their individual phases. Experiments showing this phase
locking of spatial cavity modes are presented. These hopefully help to understand which
spatial shape of optical pumping is optimal in order to achieve lasing.
The structure of this work is as follows:
Chapter 2 presents the theoretical framework. Therein, basic notions for the description

of electromagnetic waves are given (section 2.1). Processes of light emission and the laser
principle is explained (section 2.2). The Fresnel formulae and the transfer matrix method
are presented (sections 2.3 and 2.4). Sections 2.5 and 2.6 introduce DBR mirrors and
microcavities and their optical properties. Polarisation splitting of the cavity modes is
discussed. An analytical approximation, which enables one to calculate the angle and
spectrally dependent transmission behaviour of a DBR microcavity, is given, including
absorption and gain of the cavity medium (sections 2.7 and 2.8). Compared to section 2.6,
where only the angle dependent resonance frequency is of interest, here, the transmission
for a whole spectral range is discussed, making statements about the width of the cavity
mode possible. The notion of the in plane size of cavity modes is laid out, and the effect of
gain on the mode radius is discussed shortly (section 2.9). Phase locking of spatial cavity
modes above lasing threshold is introduced (section 2.10).
In chapter 3, the experimental setup used for the measurements is described.
Chapter 4 presents the experimental studies on polarisation splitting of the cavity modes:

The sample and the measurement method are described (sections 4.1 and 4.2), and the
results are discussed (section 4.3). Corresponding calculations are presented and compared
with the measurements (section 4.3).

Experiments on spatial mode locking are reported in chapter 5: After describing the
sample and the measurement (sections 5.1 and 5.2), the results are presented and discussed
(section 5.3).

Finally, a conclusion and an outlook are given (chapter 6).

Author’s contribution.

The content of the whole chapter 2, namely the theoretical considerations, is taken from
literature—directly or with modifications with ideas from other external sources. Only
the numerical transfer matrix calculations to produce figures illustrating aspects of the
theory were performed by the author of this work.



9

Most of the measurement setup, explained in chapter 3, including the modification
mentioned in section 5.2, was already built by other members of the research group in the
past. The author of this work did only do minor modifications to the preexisting setup to
get the setup mentioned in the text.
The chapters 4 and 5 describe tasks conducted by the author of this work, except

the sample preparation (sections 4.1 and 5.1), which was done by other members of the
research group.

Conventions.

Throughout this work, the following convention for a coordinate system will be used:
When not mentioned otherwise, the coordinate system used will be defined to be

Cartesian. The z axis will be parallel to the normal direction of the sample or the cavity
or the distributed Bragg reflector, whereas the x and y axes will lie parallel to the sample
/ cavity / mirror plane (refer to figure 3.1 on page 47 for this definition of the coordinate
system).
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2 Theoretical Basis.

2.1 Ways of describing Light.

This section introduces basic ways of describing light, and the notation used in this work
for describing plane harmonic electromagnetic waves.

Light can be described in several ways:

1. As an electromagnetic wave, characterised by its frequency and direction of propaga-
tion and determined by the physical laws dictated by Maxwell’s equations.

2. As a collection of the elementary particles which are called photons. Each photon has
an energy which corresponds to the frequency in the electromagnetic wave picture
and propagates in a specific direction.

3. If the spatial scale of description is much larger than the wavelength, the propagation
can be described in terms of rays.

In this work, the wave description will mostly be used.
An arbitrary electromagnetic wave can be decomposed into an integral over so called

plane waves. Plane waves are harmonic waves with one definite frequency which propagate
in one definite direction and extend infinitely in space. In the following, the notations
used for these waves are laid out.
Let the electric field vector ~E of a general electromagnetic harmonic plane wave be

given as
~E = <

[
~E0 · ei(ωt−

~k~r)+iφ
]

= <
[
~E0 · eiω(t−

n
c
~s~r)+iφ

]
, (2.1)

where ~E0 is the electric field amplitude of the wave, ω the angular frequency, ~k the wave
vector, and φ a constant phase of the electromagnetic wave, ~s = ~k

|~k| the unit vector in
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propagation direction, n the refractive index of the medium the wave is propagating in, c
the speed of light in vacuum, ~r and t are the location and time for which to evaluate ~E
and < denotes the mapping returning the real part of its argument. A complex amplitude
~A of the electric part of the electromagnetic field is defined as

~A = ~E0 · eiφ; (2.2)

it incorporates the amplitude and vectorial polarisation ( ~E0) as well as the phase (eiφ) of
the electric wave. The frequency and propagation direction (ω and ~s) and the temporal
and spatial dependence are kept out of ~A. With equation (2.2), the electric field wave
(2.1) becomes

~E = <
[
~A · ei(ωt−~k~r)

]
= <

[
~A · eiω(t−

n
c
~s~r)
]
. (2.3)

Later, sometimes only the length
∣∣∣ ~A∣∣∣ =: A of the complex electric amplitude will be used,

but it will also be called complex electric amplitude. It will be clear that the vectorial
character is not important.

Note, that for describing an electromagnetic wave, it is sufficient to describe the electric
part, because the equation [2]

~B = 1
c
~s× ~E (2.4)

relates the magnetic field ~B to the electric field.

2.2 Stimulated Emission and Lasing.

Originally, the term laser is an abbreviation for light amplification by stimulated emission
of radiation. Nowadays it is not only used as an abbreviation. Rather, laser is also used
as a term for devices which emit light by the laser principle (“(a) laser”), and for the light
which is produced by a laser (“laser light”). Also as a verb the word is used, describing the
act of emitting laser radiation (“(to) lase”).

The laser principle is explained in this section. Most of the details presented here are
adopted from the diploma thesis of Schütte [3].
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Figure 2.1: Spontaneous (a) and stimulated (b) emission in a two level system. The energy
difference between the excited state and the ground state is ~ω. The emission
in (a) occurs statistically with a characteristic time τ . The emission in (b)
occurs exactly when the incoming photon passes the system.

2.2.1 Photon Emission Processes.

For simplicity consider an optically active system with only two energetic levels. This is a
model system for an atom with an electron that can be excited, or an excitable molecule.
If the system is energetically excited, it can relax and emit the stored energy as light in
the form of one photon. The photon then carries the excitation energy. This emission
process can occur in two ways:

1. As spontaneous emission. Spontaneous emission is characterised by a time τ . τ is
the life time of the excited state. It is statistically defined for an ensemble of excited
systems: τ is the time after which the 1

e
th fraction of the originally excited systems are

still excited; the others did already decay and emit a photon. Spontaneous emission
is a statistical process, and each excited two level system emits independently from
all the others.
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2. As stimulated emission. Stimulated emission can occur when an excited system is
traversed by a photon with an energy of the same value as the energy of the excited
state. The excited state can then decay and emit a second photon which has the
same energy, momentum and polarisation as the first, initiating, photon. Because
both photons have the same properties, they are coherent with respect to each other.

Also, the reverse process can happen: If the system is not excited, a photon with matching
energy can be absorbed and excite the system.

Figure 2.1 shows schematically the process of spontaneous and stimulated emission. The
energy ~ω of the emitted photon coincides with the energy difference ~ω0 between the
excited state and the ground state. However, the photon energy does not exactly equal
that energy. Rather, it is distributed around the energy value of the excited state with a
width ∆~ω = ~

2τ given by Heisenberg’s uncertainty principle.
Most systems are not simple two level systems as the one described here, but the basic

principles remain the same nonetheless.

2.2.2 Light Amplification, Gain and Laser Threshold.

Because the photon emitted by stimulated emission has the same properties as the photon
which induced the emission, light can be amplified using this effect. An optically active
medium contains many atoms or molecules which can emit or absorb light. The macroscopic
ability of such a medium to amplify light by stimulated emission is called gain. When
a medium is cold, all its emitters are in the ground state. By external excitation of the
material, for example using light with a matching photon energyi, some of the atoms or
molecules will be excited. This process is called pumping. The excited emitters can relax
by spontaneous or stimulated emissionii.

If the radius of the optically active material is small compared to the average pathlength
which photons travel before they are re-absorbed by the material or before they can
stimulate an emission, then almost all emitted photons leave the medium without any
further interaction. In this case, almost all the internal emission comes from spontaneous
emission (if there is no intense external source which triggers stimulated emission). On

iSome systems can also be excited electronically, for example.
iiThere are also other—non-radiative—forms of relaxation. They are not discussed here.
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the other hand, if the extension of the optically active material is large compared to the
mean free path of a photon travelling inside it, the following two things are possible:

1. If the overall absorption of photons—due to excitation of molecules or atoms, but
also due to other, dissipative, effects—is higher than the gain, spontaneous emission
is the main type of emission in the system. This regime is called the regime of
spontaneous emission.

2. If the gain compensates (or overcompensates) all absorption, each emitted photon
stimulates the emission of one (or more) further photons, on average. This regime is
called the laser regime. The generated radiation is dominated by stimulated emission,
and the emitted light is coherent.

When the device is operating in the regime of spontaneous emission, light is emitted into
all possible modesiii, whereas in the laser regime most of the emission takes place into the
laser mode. The so called β factor is defined as the ratio between the spontaneous emission
power P spontaneous

laser coupled into the actual laser mode and the total power P spontaneous
total of

radiation emitted by spontaneous emission:

β = P spontaneous
laser
P spontaneous
total

. (2.5)

β is defined by the properties of the material in the regime of spontaneous emission. A
generalised β factor β′ will be introduced: It is the emission power Plaser released into the
laser mode over the total emission power Ptotal, regardless whether the sample is in the
regime of spontaneous or stimulated emission:

β′ = Plaser

Ptotal
. (2.6)

When the device is in the laser regime, where stimulated emission dominates, most of
the excited states quickly get deexcited by stimulated emission, thus all emitting into the
same mode. That is why β′ is almost 1 in the laser regime, while in general it is smaller
by orders of magnitude in the regime of spontaneous emission.
iiiPossible modes are on the one hand determined by the geometry of the surrounding, e.g. whether the

emitter is placed inside a cavity, and on the other hand by the spectral width of the emitter. Note that
also a theoretical emitter with vanishing spectral width can emit into infinitely many modes, because
each direction of emission corresponds to a different mode.
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Figure 2.2: Theoretical input output curves for a laser. Shown are curves for different
values of the β factor. The figure is taken from [3] and has been slightly
modified.
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The curve relating the output power Plaser (or intensity) of the laser mode to the power
Ppump (or intensity) of the external pumping is called input-output-curve of a laser. With
increasing Ppump, Plaser increases linearly in the spontaneous emission regime. Also the
gain increases with the pumping power. At a level where the gain just compensates all
losses, lasing starts, and Plaser increases rapidly by 1

β
. This very small region of Ppump

where Plaser almost jumps is called the laser transition, and the value of Ppump where it
takes place is the laser threshold. After the laser transition, Plaser increases linearly again
with Ppump. Figure 2.2 shows theoretical input output curves for different values of β. It
can be seen that the higher β, the lower the laser threshold. Note that for lasers with β
close to 1 the laser transition is not discernible in the input-output-curves, that is why
this case is often referred to as the thresholdless laser.

2.2.3 Emission in optical Resonators and Purcell Effect.

An optical resonator consists in the simplest case of just two plane mirrors, which are
parallel and enclose some space. Cavities as described in section 2.6 are optical resonators.
If some emitting material is placed inside a resonator, emitted light may traverse the
medium several times before it escapes the mirrors. Light is reflected multiple times
through the active medium, which increases the probability of the photons to interact with
the medium. That is why in this case a small amount of active material can be enough to
achieve lasing, even if the extension of the material is smaller than the mean free path of
a laser mode photon.

Within a resonator, also another effect occurs: The Purcell effect. Purcell [4] did describe
the modification of the spontaneous emission lifetime τ for individual modes when the
excitable system is put inside a cavity: Cavity quantum electrodynamics determines the
spontaneous emission by the interaction between the optically active medium and the
vacuum radiation modes. If the vacuum states are altered, also the spontaneous emission
lifetime changes. If the emitter is placed in a cavity, the rate of emission into the discrete
cavity modes is increased, whereas for modes forbidden by the cavity the emission is
decreased. If the laser mode is a cavity mode, the Purcell effect increases β. Therefore,
with a good cavity, the laser threshold can be decreased notably compared to its level
without a cavity.
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2.3 Review of the Fresnel Formulae.
The so-called Fresnel formulae describe the amplitude and phase of reflected and transmitted
light impinging on a medium boundary, separately for TE and TM polarised light. In this
section, a short review of the Fresnel formulae is given, following the book [2] by Born and
Wolf.
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Figure 2.3: Refraction and reflection of a plane wave impinging on a medium boundary.

Consider a plane boundary between two media. Let the media be called medium 1 and
medium 2, with respective refractive indices n1 and n2. Now, let the wave described by
equation (2.3) originate from somewhere inside medium 1 and impinge on that boundary.
Let the coordinate system be defined such that the medium boundary lies in the x-y-plane
and the light is propagating in the x-z-plane (the so called plane of incidence). The
situation is depicted in figure 2.3. The incident wave is marked with ~si and encloses an
angle θi with the z-axis, the reflected wave is marked with ~sr and encloses an angle θr with
the z-axis, and the transmitted wave is labelled ~st and forms an angle θt with the z-axis.

Due to the choice of the coordinate system, ~k is perpendicular to the y-direction. Thus,
equation (2.3) can be written as

~E = <
[
~A · eiω(t−

n
c
(x sin θi−z cos θi))

]
. (2.7)

This field can be decomposed into two vectorial components which are orthogonal with
respect to each other and have their own value of φ each. These components are called
polarisations of the light.
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Let one of the components be parallel to the plane of incidence. This component will be
indexed by ‖ and called transverse magnetic (TM-) or p-polarisation. The other component
is defined to be perpendicular to the incidence plane and will be indexed by ⊥ and called
transverse electric (TE-) or s-polarisation.
Let Ai denote the complex electric amplitude of the incident wave, At the complex

electric amplitude of the transmitted and Ar the complex electric amplitude of the reflected
wave. For media which have zero conductivity and a relative magnetic permeability µr
equal to one, the book [2] gives the Fresnel formulae, relating At‖ , At⊥ , Ar‖ and Ar⊥ to
Ai‖ , Ai⊥ , θi and θt, as follows:

At‖ = 2 cos θi sin θt
sin (θi + θt) cos (θi − θt)

· Ai‖ ,

At⊥ = 2 cos θi sin θt
sin (θi + θt)

· Ai⊥ ,

Ar‖ = tan (θi − θt)
tan (θi + θt)

· Ai‖ ,

Ar⊥ = −sin (θi − θt)
sin (θi + θt)

· Ai⊥ . (2.8)

Using the law of refraction, n1 sin θi = n2 sin θt, θi or θt can be eliminated if one wishes,
thereby including n1 and n2 into the formulae. The angles in the above equations are
bounded by 0 and π

2 (the case of total internal reflection is not considered here).
Under some conditions, Ar obtains a phase shift of π upon reflection, which corresponds

to a multiplication of A by −1 = eiπ. The phase shift will be determined by looking at the
signs of the expressions for the reflected amplitudes in the equations (2.8) and utilising
n2 T n1 ⇔ θt S θi: Ar⊥ is phase shifted by π with respect to Ai⊥ in the case of n2 > n1.
Ar‖ is phase shifted by π with respect to Ai‖ if

1. n2 > n1 and θi + θt >
π
2 or

2. n2 < n1 and θi + θt <
π
2 .

In all other cases, the phase shift is 0 or there is no light reflected.
The amplitude transmission coefficient t for the transmitted amplitude is defined as the

ratio of the transmitted amplitude with the incident amplitude: t := At
Ai
. Similarly, the
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reflection coefficient r is defined as r := Ar
Ai
. From equation (2.8), t and r follow to be

t‖ = 2 cos θi sin θt
sin (θi + θt) cos (θi − θt)

,

t⊥ = 2 cos θi sin θt
sin (θi + θt)

,

r‖ = tan (θi − θt)
tan (θi + θt)

and

r⊥ = −sin (θi − θt)
sin (θi + θt)

. (2.9)

What happens if the light path is reversed in such a way that the incident light is now
coming from the path of the transmitted light in the previous discussion? The following
nomenclature is being used: Quantities with a tilde (̃ ) on top will belong to the new case
where light is going the reverse direction, quantities without a tilde belong to the original
case. Thus, it is

θ̃i = θt,
θ̃t = θi,
ñ1 = n2 and
ñ2 = n1. (2.10)

From equations (2.9) it follows

t̃‖ = 2 cos θt sin θi
sin (θi + θt) cos (θt − θi)

,

t̃⊥ = 2 cos θt sin θi
sin (θi + θt)

,

r̃‖ = tan (θt − θi)
tan (θi + θt)

and

r̃⊥ = −sin (θt − θi)
sin (θi + θt)

. (2.11)
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With the relations sin (−x) = − sin (x), cos (−x) = cos (x), tan (−x) = − tan (x),
n1 sin θi = n2 sin θt (law of refraction) and cos (arcsin x) =

√
1− x2 it follows for both, TE

and TM, polarisations:

t̃ = t · tan θi
tan θt

= t ·

√(
n2
n1

)2
− sin2 θi

cos θi
and

r̃ = −r. (2.12)

Also, the following relation holds true:

tt̃− rr̃ = 1. (2.13)

2.4 Review of Transfer Matrix Calculations.

In this section, a principal derivation of the transfer matrix method will be given, which
is being used to calculate optical properties of unstructured (planar) microcavities. This
derivation is inspired by and roughly follows the lecture notes of Sernelius [5].

Consider a stack of N vertical plane parallel layers of dielectric materials, illuminated
from the left with monochromatic, parallel light. The electromagnetic wave travelling
within this stack can, at each point, be described as a superposition of a left and a right
propagating plane wave. Firstly, the influence of an arbitrary single layer on the electric
field propagating through it is studied. Secondly, the N layers are put together so that
the transmission and reflection of the whole stack can be calculated.
Investigating a single layer, the notations and definitions as given in figure 2.4 and its

caption are used. By R, the complex electric amplitude of the right propagating wave is
referred to, similarly, L denotes the complex electric amplitude of the left travelling wave.

The amplitudes of the incoming waves with respect to layer i are referred to by Ri and
Li+1, of the outgoing ones by Li and Ri+1. So, Li and Ri+1 both depend only on Ri and
Li+1 as well as on the properties of the layers i− 1, i and i+ 1. The layer properties are
expressed in terms of the transmission and reflection coefficients of, as well as the phase
delays due to travel through the layers. The outgoing waves can therefore be characterised
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by

Ri+1 = ti−1,ie
iδiRi + eiδiri,i−1e

iδiLi+1 and
Li = ri−1,iRi + eiδiti,i−1Li+1, (2.14)

where ta,b resp. ra,b is the transmission resp. reflection coefficient for light which comes
from layer a and impinges on the boundary to layer b, and δa is the phase shift the light
obtains while travelling through layer a once. δa can be expressed as

δa = `a
cos θa

ωna
c

(2.15)

(refer to equation (2.1)), where `a is the thickness of layer a, θa the angle, with respect to
the layer boundary normal, of propagation inside layer a and na the refractive index of
layer a. With some algebraic transformation, Ri and Li can be expressed in terms of Ri+1

i +1LayerLayer ii −1Layer

Ri

L i i +1R

i +1L
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Figure 2.4: The definition of the elements used for the derivation of the transfer matrix
method. The left interface of layer i is defined as completely belonging to layer
i. So, Ri denotes the complex amplitude of the wave travelling to the right,
evaluated at the right edge of layer i− 1, just before entering layer i. Similarly,
Li denotes the complex amplitude of the wave travelling to the left, evaluated
at the right edge of layer i− 1, just after leaving layer i. The indexing of the
layers increases to the right.
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and Li+1, which can be written in matrix notation:
 Ri

Li

 = 1
ti−1,i

 e−iδi ri−1,ie
iδi

ri−1,ie
−iδi eiδi

 Ri+1

Li+1

 =: Mi

 Ri+1

Li+1

 , (2.16)

where the relations relations (2.12), relating ri−1,i and ri,i−1, and (2.13) were used. The
matrix

Mi = 1
ti−1,i

 e−iδi ri−1,ie
iδi

ri−1,ie
−iδi eiδi

 (2.17)

is called the transfer matrix for layer i.

With equation (2.16), the fields directly left of layer i are related to the fields at the
right edge of layer i; i is arbitrary. More general, for an arbitrary j (j ≤ i), the fields left
of layer j can be related to the fields just at the right edge of layer i in the following way:
The transfer matrices of the layers j, j + 1, . . ., i are put one after another, M1M2 · · ·MN .
The transfer matrix M of the whole layer stack, including the rightmost surface, can thus
be obtained by

M = M1M2 · · ·MNMrsN , (2.18)

where the matrix MrsN describes the transfer through and reflection at the right surface
of the rightmost layer. It has to be included since in the derivation the surface left of a
layer was assumed to belong to that layer, and thus the rightmost surface of the stack,
where there is no more layer coming, has to be included by hand. This matrix is given by

MrsN = 1
tN,N+1

 1 rN,N+1

rN,N+1 1

 . (2.19)

Indices equal to 0 and N + 1 refer to the medium directly left of and right of the layer
stack, respectively. M is relating the fields just left of the whole stack to the fields just
right of it. Denoting by R′N resp. L′N the right travelling resp. left travelling fields just
outside the stack on its right side (thus, just behind the right side of the right border of
layer N), the following holds true:

 R0

L0

 = M
 R′N+1

L′N+1

 =:
 M11 M12

M21 M22

 R′N

L′N

 , (2.20)
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where Mij is the ij-component of M.

To obtain the reflection and transmission coefficients r and t of the whole stack, it
is assumed that only from one side light is shining onto the system. The reflected and
transmitted amplitudes of that light are calculated. This is done for two cases, firstly, the
light comes from the left side, secondly, it comes from the right side. This yields r and t
for both directions.

In the first case to deal with, light is shining only from the left side onto the stack. Thus
the complex amplitudes to consider are Ai for the incident light (from the left), Ar for the
reflected light (to the left) and At for the transmitted light (to the right) (following the
previous nomenclature, Ai = R0, Ar = L0, At = R′N , and L′N = 0). So, on the one hand it
is

Ar = rRAi and
At = tRAi, (2.21)

where the index R means that these are the reflection and transmission coefficients for
incident light coming from the left propagating to the right, and on the other hand Ai

Ar

 =
 M11 M12

M21 M22

 At

0

 . (2.22)

Comparing equations (2.21) and (2.22), one finds

rR = M21

M11
,

tR = 1
M11

. (2.23)

The same argument can be done for the second case where light shines from the right
side only onto the stack. Via 0

At

 =
 M11 M12

M21 M22

 Ar

Ai

 , (2.24)
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this leads to

rL = −M12

M11
and

tL = M12M21

M11
+M22. (2.25)

Here, the index L means that the coefficients are for incident light coming from the right,
propagating to the left.

With the method described above, the reflection and transmission coefficients of a stack
of plane parallel layers can be calculated according to equations (2.23) and (2.25). For
this, the transfer matrix M of the stack has to be constructed from the properties of the
individual layers.

2.5 Dielectric Bragg Reflectors (DBRs).
Distributed Bragg reflectors, short DBRs or dielectric mirrors, are mirrors which have
very high reflection coefficients (typically in the order of 99.9%) within a given spectral
region and are fairly transparent within other spectral regions. Here, DBRs and their basic
properties will be introduced.
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Figure 2.5: Cross sectional sketch of a DBR.

A DBR is a mirror of the following kind: An alternating stack of layers of two, ideally
non-absorbing, materials (see figure 2.5), where the refractive indices of both materials
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Figure 2.6: Typical transmission and reflection spectrum of a DBR. The design comprises
TiO2 as material 1 (n1 = 2.19) and SiO2 as material 2 (n2 = 1.45) with an
optical layer thickness of 112.5 nm, leading to a the stop band centred around
450 nm. The spectrum is calculated using a software (SCI FilmWizard, [6])
which utilises the transfer matrix method.

differ.
Ideally, the optical thicknessiv of each layer is the same. Only this case will be dealt

with here. One material will be called material 1, the other material 2. Consequently,
the refractive index of material i will be called ni and the thickness of a layer made of
material i `i.
The optical thickness ni`i of each layer being the same implies

n1`1 = n2`2. (2.26)

The transmission and reflection spectra of such a DBR can be calculated with the transfer
matrix method described in section 2.4, where the wavelength (or angular frequency) of
the light is incorporated by equation (2.15). Figure (2.6) shows the calculated spectra

ivThe optical thickness of a layer is its (physical) thickness multiplied by its refractive index.
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of transmitted and reflected intensity for a DBR with the following design: n1 = 2.19,
n2 = 1.45, 11 layers of material 1, 10 layers of material 2 (between material 1 layers),
ni`i = 112.5 nm. Such a DBR shows very high reflectance (∼ 99.9%) within a wavelength
range, called the stop band. The stop band is centred around a wavelength called λs, the
wavelength of the centre of the stop band. λs is given by the Bragg condition of constructive
interference of all the light beams reflected at all layer boundaries. With λs known, the
angular frequency of the centre of the stop band is

ωs = 2πc
λs

. (2.27)

For propagation angles parallel to the DBR normal direction,

ωs = mπc

2ni`i
, (2.28)

with m ∈ N \ {0}. Relation (2.28) directly follows from the Bragg condition. For oblique
propagation, Panzarini et al. [7, 8] give appropriate expressions, different for TE and TM
polarisation. For n1 > n2, they are for the lowest order (m = 1) stop band:

ωTE
s = πc (n1 cos θ1 + n2 cos θ2)

2n1n2 (`1 + `2) cos θ1 cos θ2
and

ωTM
s = πc (n1 cos θ2 + n2 cos θ1)

2n1n2 (`1 cos2 θ1 + `2 cos2 θ2)
, (2.29)

where θi is the propagation angle inside material i. In the example of figure (2.6), the
incidence of the light is in the normal direction (θ = 0°), and λs is 450 nm. The transmitted
intensity is one minus the reflected intensity, because absorption is neglected.

2.6 DBR Microcavities and Polarisation Properties.

2.6.1 Introduction to DBR microcavities.

When two plane parallel mirrors enclose a small gap, an optical cavity is formed. In
this section, cavities with DBR mirrors, their basic properties, polarisation properties and
electromagnetic field enhancement effects are presented.
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Figure 2.7: Vertical cross sectional drawing of a DBR microcavity.

It is possible to create an optical cavity by sandwiching a layer of an optically transparent
material between two DBRs. If the thickness of this cavity layer is in the order of
micrometers, the device is called a microcavity or, in the special case with dielectric
mirrors, DBR microcavity. Figure 2.7 shows a cross sectional sketch of a DBR microcavity.
The thickness of the cavity layer is denoted by `c.

Due to the cavity layer, the transmission spectrum of the device differs qualitatively from
that of a pure DBR: For each wavelength within the stop band, that fulfils the resonance
condition of the cavity, the DBR microcavity has a high and spectrally narrow transmission
peak (and, consequently, shows low reflectance at this spectral position). Each spectral
region, for which this cavity resonance condition is met, is called cavity mode. Cavity
mode wavelengths are denoted by λm, and, conversely, cavity mode angular frequencies
by ωm. Figure 2.8 shows a transmission spectrum of a DBR microcavity which is made
of a cavity layer with refractive index nc = 1.7 and thickness `c = 443.38 nm = 3.94λs4 ,
surrounded by two DBR mirrors of the same type as used for making the spectra in
figure 2.6. The spectrum is calculated using the software FilmWizard [6] from Scientific
Computing International. The spectrum shows two cavity modes, one at 408.99 nm, the
other at 477.45 nm. In this example, the light propagates parallel to the cavity normal
direction (θ = 0°).

Before dealing with the theory of DBR microcavities, a short look will be taken on
“classical” cavities. These are cavities bound by two “normal”, surface reflecting mirrors.
These mirrors induce a phase shift of exactly 0 or π to reflected light (but nothing in
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Figure 2.8: Calculated transmission spectrum of a DBR microcavity with two cavity modes
(their wavelengths are indicated).

between)v. The cavity modes are calculated as follows: For a resonant cavity mode and
for an arbitrary point inside the cavity, light passed i and light passed j round trips
inside the cavity should interfere constructively. From equation (2.3), this leads, under
the assumption that the phase shift at both mirrors is the same (either both 0 or both π),
to the condition

∣∣∣~km∣∣∣ = mπ

`c cos θc

⇔ ωm = mπc

nc`c cos θc
(2.30)

for the cavity mode wave vector ~km and angular frequency ωm, where m ∈ N \ {0} is the
order of the cavity mode, θc the angle of propagation of light inside the cavity and `c is
the thickness of the cavity.

vA DBR microcavity is not a classical microcavity because the DBRs induce a phase shift which in
general is neither 0 nor π; see equation (2.31) below.
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2.6.2 Modes of DBR microcavities.

For DBR microcavities, theory is a bit more involved. Theoretical considerations about
DBR microcavities were done by Panzarini et al. [7, 8]. Their results will be summarised
here.

The reflection coefficient of a microcavity DBR with n1 > n2
vi is

rDBR ≈
√

Rei
nc
c
`DBR(ω−ωs) cos θc . (2.31)

The approximation assumes that the modulus
√

R of the reflection coefficient does not
depend on the light angular frequency ω, and that the phasevii nc

c
`DBR (ω − ωs) cos θc is

linear in the mismatch ω − ωs of ω with respect to the centre of the stop band frequency
ωs. This approximation is valid for small |ω − ωs|; i.e. for ω lying well inside the stop
band. `DBR represents a depth of penetration of the electromagnetic field into the DBR.
At θ = 0, `DBR equals a length `τ , where `τ is the distance from the DBR surface at which
a “normal” mirror must be placed so that light obtains a phase delay upon reflection at
that displaced mirror equal to the phase delay upon reflection at the undisplaced DBR.
R, `DBR, and ωs depend on the refractive indices of the materials incorporated into the
microcavity and the angle of propagation. As they also depend on the polarisation of the
electromagnetic field, the amplitude and phase of the reflection coefficient are different for
different polarisation directions. Expressions for R, ωs and `DBR are given in the appendix
of publications by Panzarini et al. [7, 8] for both polarisations; they were approximated
utilising the transfer matrix method. Also note that the calculation is only valid for a
large number N of material 1-material 2-pairs in the DBR. The expressions for n1 > n2

viHere, material 1 is, in contrast to the notation used by Panzarini et al. [7, 8], the material at the outside
(airside) of the structure.

viiThis actually is the phase shift which light obtains that is reflected at a DBR. In general, it can get all
values, not just 0 or π, depending on ω and the DBR parameters.
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are reproduced here (ωs was already given in section (2.5) and is thus omitted here):

RTE = 1− 4next cos θ
nc cos θc

(
n2 cos θ2

n1 cos θ1

)2N

,

RTM = 1− 4next cos θc
nc cos θ

(
n2 cos θ1

n1 cos θ2

)2N

; (2.32)

`TEDBR = 2n2
1n

2
2 (`1 + `2) cos2 θ1 cos2 θ2

n2
c (n2

1 − n2
2) cos2 θc

and

`TMDBR = 2n2
1n

2
2 (`1 cos2 θ1 + `2 cos2 θ2)

n2
c (n2

1 cos2 θ2 − n2
2 cos2 θ1)

. (2.33)

θi is the angle of light propagation inside material i and next is the refractive index of
the medium surrounding the microcavity. In all further considerations, next = 1 will be
assumedviii.

The cavity modes are determined by

r2
DBRe

2ik̃mz `c = 1 (2.34)

(k̃mz is the z component of the cavity mode complex ~̃k vector, evaluated inside the cavity
layer). Because |rDBR| ≤ 1 in general, this gives complex k̃mz and thus complex cavity
mode frequencies. The imaginary part of the cavity mode frequency is the spectral mode
half width at half maximum, and the real part, the real cavity mode frequency, is

ωm = `cωc + `DBRωs

`c + `DBR
, (2.35)

where ωc = mπc
nc`c cos θc are the cavity mode frequencies of a “classical” microcavity (see

equation (2.30)). `eff := `c + `DBR can be interpreted as an effective cavity thickness.

viiiIn reality, a glass substrate is used for the experiments described in chapters (5) and (4), thus next ≈ 1.45
at one side and next = 1 at the other side of the cavity. However, this does not play a role for the
qualitative effects, and since no precision measurements were done, this can be ignored when doing
the theory where the physical effects as such are important. In fact, when performing transfer matrix
calculations resembling the experiments, the glass substrate is taken into account.
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Figure 2.9: Angle resolved transmission spectrum of a DBR microcavity. Plotted is the
intensity transmittance of the cavity in % in logarithmic scale. The white
region in the centre is the stop band, where two cavity modes can be seen,
one at the small wavelength edge, the other in the left third of the stop band.
The plot shows the angular dispersion of the cavity mode. The data for angles
close to 90° are probably not correct anymore since the numerics diverges and
degenerates for θ → 90°. Also, a splitting of the cavity modes for angles > 0°
can be seen. This is polarisation splitting and will be explained in section 2.6.3.
This spectrum is calculated with the software FilmWizard [6] from Scientific
Computing International, utilising the transfer matrix method.

Angle Dependence of the Mode Frequency.

The angle dependence of the cavity mode frequency is simple in the case when the
refractive indices of the mirror and cavity layer materials are close to each other; this is
the approximation n1 ≈ n2 ≈ nc =: neff. This approximation yields θ1 ≈ θ2 ≈ θc =: θeff via
n1 sin θ1 = n2 sin θ2, and `1 ≈ `2 via equation (2.26). Note that under this approximation
`DBR diverges (see equation (2.33)), and from equation (2.35) it follows ωm ≈ ωs. A look
at equation (2.29) then reveals the angle dependence of the cavity mode frequency:

ωm (θeff)
ωm (0°) ≈

1
cos θeff

. (2.36)

For the wavelength, this yields with λ = 2πc
nω

,
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λm (θeff)
λm (0°) ≈ cos θeff. (2.37)

If the refractive indices of the material differ, the analytical calculation of the angular
dispersion is more involved, but the result is qualitatively similar.
Figure 2.9 shows the calculated dispersion of the cavity mode for the following DBR

microcavity: The DBRs are identical to those whose transmission spectrum is depicted in
figure 2.6, the parameters for the cavity layer are nc = 1.7 and `c = 528.75 nm = 4.7λs4 .

2.6.3 Polarisation splitting in DBR microcavities.

Since `DBR and ωs are polarisation dependent, the cavity mode frequency will be slightly
different for both, TE and TM, polarisations; whereas the difference of R for both
polarisations results in a difference of the cavity mode half width. The effect of differing
mode frequencies will be discussed here.
Panzarini et al. [7, 8] consider the case at which n1, n2 and nc are close to each other.

Then, ωs is approximately the same for both polarisations and only `DBR makes up the
polarisation difference of the cavity mode frequency. The polarisation splitting ∆ of the
mode frequencies is given in those approximations as

∆(θ) := ωTM
m (θ)− ωTE

m (θ) '
`c
(
`TMDBR(θ)− `TEDBR(θ)

)
(ωs(0°)− ωc(0°))

(`c + `DBR(0°))2 cos θeff
. (2.38)

The polarisation splitting is zero for θ = 0 (which generally has to be the case because at
θ = 0 the polarisations are not distinguishable) as well as for ωs = ωc.
ωc and ωs are approximately equivalent (exactly for θ = 0) if nc`c = 2mni`i, m ∈ N\{0}.

Furthermore, for ωc = ωs, it is ωm = ωc (refer to equation (2.35)). Sometimes the quantity
ωs(0°)− ωc(0°), sometimes ωs(0°)− ωm(0°) is called the detuning Γ of the cavity. Here,
Γ = ωs(0°)− ωm(0°) will be used, since ωm is experimentally directly accessibleix whilst ωc

is not. To see how ωm and ωc are related, a look at equation (2.35) helps: Expressing all
occurrences of `c in terms of ωc, it is obvious that ωm grows iff ωc grows; the same holds
true for shrinking frequencies. Furthermore, ωm lies between ωc and ωs. For `DBR → 0,
ωm → ωc, conversely, for `DBR � `c, ωm → ωs. So, ωs(0°)−ωm(0°) is zero if ωs(0°)−ωc(0°)

ixAt least in the experiments laid out in this work ωm is directly measured whereas ωc is not.
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Figure 2.10: Electric field amplitude in a DBR microcavity depending on the depth inside
the sample. The cavity is illuminated from the left side with a wavelength
corresponding to the cavity ground mode (m = 1) wavelength ωm (0°). The
electric field amplitude is normalised such that the incident field has an
amplitude of 1. The vertical lines are not the coordinate grid but indicate
the boundaries between the material layers. In the centre, around 1400 nm,
the cavity layer is visible as the thickest layer in the structure. The field is
calculated using a software (SCI FilmWizard, [6]) which utilises the transfer
matrix method.

is zero, and both quantities simultaneously grow or shrink. Γ lies always between zero and
ωs(0°)− ωc(0°).

From equation (2.38), it directly follows that the polarisation splitting approximated as
above linearly depends on ωs(0°)− ωc(0°). It will be zero for Γ = 0 and grow and shrink
with Γ, but, in general, does not exactly linearly depend on Γ.

2.6.4 Electromagnetic field enhancement in microcavities.

For resonant frequencies, the electromagnetic field inside the cavity is much higher than
the field outside. A calculation of this field enhancement effect is shown in figure (2.10).
If the cavity layer is filled with an optically active medium, this field enhancement effect
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enhances the coupling between the atoms or molecules in the medium and the cavity
mode.

Experimental studies on the polarisation splitting are presented in chapter 4. The
dependence of the splitting on the detuning of the cavity mode is directly measured using
a sample which has a thickness gradient incorporated into the cavity layer. The results
are compared to transfer matrix calculations and to the approximate analytical equation
(2.38). It is found that for oblique angles the cavity mode splits into two modes and that
the splitting increases with the detuning. The modes are well orthogonally polarised. The
results agree with the theory.

2.7 Fabry-Pérot Interferometer. Angular Dependent
Cavity Transmission Spectrum.

In this section, the resonance properties of a simple Fabry-Pérot interferometer are analyt-
ically reviewed. This framework will then be applied to DBR microcavities, yielding an
analytical approximation for angle- and frequency-dependent DBR microcavity resonance.

A Fabry-Pérot interferometer essentially is some space bound by two plane parallel
(partly) reflective surfaces with a distance `fp between them. So, a Fabry-Pérot interfer-
ometer can be understood as a cavity with surface reflecting mirrors (compare with the
paragraph on “classical” cavities on page 27). The thickness `fp of the interferometer is
the quantity `c—the cavity thickness—used in equation (2.30), which will be used from
now on instead of `fp. See figure 2.11 for the beam propagation inside a Fabry-Pérot
interferometer. The mirrors of the interferometer can be just a single material boundary,
so the device may be constructed by taking a plate of a transparent material and placing
it in air.

The spectral and angular transmittance and reflectance of a Fabry-Pérot interferometer
are described by the so-called Airy formulae [2]. In a book by Born and Wolf [2], the
derivation of the Airy formulae is given for an interferometer with identical mirrors. They
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are:

Ir =
4R sin2 δ

2
(1−R)2 + 4R sin2 δ

2
Ii = 1

1 + 1
F sin2 δ

2

Ii and

It = T 2

(1−R)2 + 4R sin2 δ
2
Ii = 1

1 + F sin2 δ
2
Ii, (2.39)

where Ii, Ir, and It are the intensities of the incident, reflected, and transmitted wave,
respectively, F = 4R

(1−R)2 is the finesse coefficient of the cavity, and the relation T = 1−R
(see equation (2.13)) is used to introduce F . Before explaining the remaining symbols in
these equations, the corresponding equationsx for the complex electric amplitudes will be
given, since they will be used later on:

Ar =

(
1− eiδ

)√
R

1−Reiδ Ai and

At = T
1−ReiδAi. (2.40)

Here, Ai, Ar, and At are the electric complex amplitude of the incident, reflected, and
transmitted wave, respectively, and δ is the phase a wave accumulates while traversing the
cavity twice. T = tt̃, R = r2, where t and r are the complex transmission and reflection
coefficients, respectively, of the mirrors for light travelling from the mirrors into the cavity.
xAlso taken from [2].

θc

cnCavity; refractive indexIncident
beam

c

θ

Figure 2.11: Beam propagation in a Fabry-Pérot plate, surrounded by vacuum.
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Figure 2.12: Wavelength and angle dependent intensity transmittance It
Ii

of a DBR mi-
crocavity, calculated according to equation (2.44). Note that only for
λ ≈ λs = 417.5 nm the values are exact (see text before equation (2.44)).

Conversely, t̃ and r̃ are the transmission and reflection coefficients, respectively, at the
mirror-cavity-boundary for light travelling from the cavity to the mirrors. δ is given by [2]

δ = 2ω
c
nc`c cos θc. (2.41)

Substituting equation (2.41) into (2.40), one obtains the frequency and angle dependent
reflection and transmission:

Ar =

(
1− ei 2ω

c
nc`c cos θc

)√
R

1−Rei 2ω
c
nc`c cos θc

Ai and

At = T
1−Rei 2ω

c
nc`c cos θc

Ai. (2.42)

From this, the cavity mode frequencies can be calculated as the frequencies of maximum
transmission.

To apply equations (2.40) and (2.41) to DBR microcavities, the phase shift that
light obtains when it is reflected at the DBRs, must be considered: R in equa-
tion (2.40) must be replaced by RDBR, where RDBR := r2

DBR ≈ Rei2
nc
c
`DBR(ω−ωs) cos θc



2.8 Effective Reflectance. 37

(rDBR ≈
√

Rei
nc
c
`DBR(ω−ωs) cos θc from equation (2.31)). For the transmissionxi, this leads to

At ≈
T

1−RDBRe
i 2ω
c
nc`c cos θc

Ai = T
1−Rei2

nc
c

(`DBR(ω−ωs)+`cω) cos θcAi. (2.43)

This equation is only valid for angular frequencies ω close to the frequency ωs of the centre
of the DBR stop band, since this approximation was used in the equation for rDBR. The
transmission intensity is then given by

It = AtA
?
t ≈

T 2

1 + R2 − 2R cos
(
2nc
c

(`DBR (ω − ωs) + `cω) cos θc
)Ii. (2.44)

The angle and spectrally dependent transmission It
Ii

according to equation (2.44) is shown
in figure 2.12. For calculating the data for this figure, the following parameters were used:
n1 = 1.45, n2 = 2.19, nc = 1.75, λs = 417.5 nm, n1`1 = n2`2 = λs

4 , `c = 4.7 · λs4 ; R and
`DBR were calculated for TE polarisation according to equation (2.32) and (2.33) with
N = 2.5 and next = 1, ωs was calculated for TE polarisation with equation (2.29). N was
chosen relatively small to achieve a broad, well visible resonance line in the figure.

The cavity mode frequencies ωm are at the maxima of the cavity transmission intensity:

2nc
c

(`DBR (ω − ωs) + `cωm) cos θc = 2mπ (m ∈ N)

⇒ ωm = mπc

(`c + `DBR)nc cos θc
+ `DBR

(`c + `DBR)ωs. (2.45)

This reproduces the result already known from equation (2.35).

2.8 Effective Reflectance.
In reality, the cavity medium is absorbing, and when it is optically pumped it can also have
gain. For the discussion of the resonance characteristics, these effects can be incorporated
into the mirror reflectivities, yielding effective reflectivities. This is laid out here.

Let the absorption coefficient of the cavity layer be given by α and the gain constant of
the pumped cavity medium by g.
xiThe reflection will not be considered further since the cavity mode can be determined by the transmission

maximum.
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The electromagnetic field does not only propagate inside the cavity layer, but also shows
some overlap with the mirror layers (and the outside, if the mirrors are thin enough). In
general, absorption and gain are material dependent, too. So, α and g will be understood
in an averaged manner as follows: For ideally reflecting mirrors (|rDBR| = 1), during one
round trip of the light inside the cavity with effective cavity length `eff, the amplitude
of the light is damped (or enhanced, iff g > α) by a factor ofxii e−(α−g)2 `eff

cos θc . For this
definition it is assumed that α and g are homogeneously distributed in the x-y-direction
(at least in the region penetrated by the electromagnetic field). The quantity

ᾱ := α− g (2.46)

will be called the effective absorption constant of the cavity material.

In general, the mirrors are not ideally reflective, but have a reflection coefficient with
modulus ri (where i ∈ {1, 2} indexes the two mirrors of the cavity), ri ≤ 1. Therefore,
during one round trip, the amplitude is additionally damped by r1r2. Putting both
effects—material effective absorption and mirror losses—together, the amplitude gets
damped (or enhanced) by a factor

r̄2 := r1r2e
−2ᾱ `eff

cos θc (2.47)

during one round trip. r̄i := rie
−ᾱ `eff

cos θc will be called the effective reflection coefficient of
mirror i.

The idea of introducing the absorption into the description of the cavity resonance
by modifying the reflection coefficient with an absorption factor e−α

`eff
cos θc was laid out by

Enomoto et al. [9]xiii. Björk et al. [10] introduced the idea of the effective absorption α− g,
so including gain by a factor eg

`eff
cos θc is a further improvement in the description of cavities

with loss and gain.

xiiThe factor “2” in front of `eff is there because one round trip involves travelling `eff twice.
xiiiWith the difference, that Enomoto et al. [9] introduced the absorption of a material in form of a damping

constant for the intensity, whereas here it is introduced as a damping constant for the amplitude.
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2.9 Cavity Mode Radius.

In a real cavity, the cavity modes have a finite spatial extension along the cavity plane.
This section deals with the introduction of a measure of the in plane radius of cavity modes.
At the end, the dependence of the mode radius on the absorption and gain of the cavity
medium is discussed.

In a cavity without loss and which extends infinitely in the x-y-plane, the ~k vector and
thus the momentum ~~k of the photon field is defined sharply. The cavity photon field
therefore delocalises along the x-y-plane [11]. In a damped cavity, a cavity photon has a
finite lifetime and thus a non-zero energetic width ~∆ω. The momentum the field has a
width ~∆~k, and the propagation direction a width ∆θ. A single cavity photon is therefore
localised within the cavity plane, with some characteristic spatial uncertainty ∆x. This
localisation defines a radius of the cavity mode.

The intensity of a mode does not fall of abruptly at its radius, but decreases gradually
within the x-y-plane. Thus, a mode radius can not rigorously be defined. Rather, one has
to find some characteristic radius.
Moreover, in a cavity which is weakly and homogeneously(!) excited, one would not

observe discrete localised modes. Rather, each photon will have its own localisation
determined by the mode radius, the next photon can already be localised at a slightly
different position. That is why sometimes the term quasimode is used for the spatial modes
in planar microcavities.
Amongst others, De Martini et al. [11], Björk et al. [10] and Ujihara [12] made con-

siderations on the size of the cavity modes in the x-y-plane of an infinitely extending
microcavity. The way Björk et al. [10] derived an expression which characterises the radius
of one coherent mode will be followed here, while introducing some minor changes:
Equation (2.37) approximates the angle dependence of the cavity mode wavelength in

a DBR microcavity. Taylor expansion of the quantity λm (0°)− λm (θc) with respect to
θc up to quadratic orderxiv yields λm (0°)− λm (θc) ≈ 1

2λm (0°) θ2
c . Of course, this Taylor

xivIn contrast to equation (2.37), θc is used here instead of θeff. This is justified because in the case where
θeff is defined exactly, θc = θeff, otherwise using θc is quite precise since the light inside the cavity
layer is of most interest (the best would be to take a mixture of θc, θ1 and θ2 weighted with the light
penetration). In fact, equation (2.37) is only approximately valid, since in a real DBR microcavity the
refractive indices of the different materials have to be different for the device to function, which was
neglected for its derivation.
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expansion assumes small values of θc and, thus, also small values of θ. Using the law of
refraction (nc sin θc = sin θ), and omitting the sine function since the angles are assumed
to be sufficiently small, the dispersion of the cavity mode wavelength for small vacuum
angles θ is obtained:

λm (0°)− λm (θ) ≈ λm (0°)
2n2

c
θ2. (2.48)

The quadratic dependence of λm (0°) − λm (θ) on θ for small θ is directly visible in the
figures 2.9 and 4.4.

Björk et al. [10] approached λm by taking a simplified version of the condition expressed
in equation (2.34):

e2ikmz `c = 1, (2.49)

which leads to real values for kmz (λm is obtained by λ = 2πnc cos θc
kz

)xv. This derivation
holds true for wavelengths very close to the wavelength of the centre of the DBR stop
band; in this spectral region, the reflection coefficient rDBR of the DBR mirrors is real, and
the condition (2.49) yields correct km. In fact, Björk et al. [10] performed the derivations
presented here under the assumptions ω ≈ ωs and rDBR being real.
They further argue that rDBR can be expressed explicitly in terms of kz and θc only

and depends only slightly on the angle for small θc. Hence, for incidence around the
normal direction and for cavity modes close to the centre of the stop band, the resonance
characteristics are given by kz only. This implies that changing kz via a small change in θ
and keeping the wavelength constant changes the resonance condition in the same way
as changing kz by varying

∣∣∣~k∣∣∣ = 2π
ncλ

(and thus changing the wavelength) and keeping the
incidence angle constant, as long as the change of kz is the same in both cases. (2.50)
This result will be used later to relate a spectral mode width, expressed in terms of ∆kmz ,
to an angular mode width, expressed in terms of ∆θ.
The amplitude transmittance At

Ai
of a DBR microcavity is given by the Airy formula,

equation (2.43). Since the reflection coefficient of the mirrors is real under the assumption
ω ≈ ωs, it is given by

√
R only. Instead of strictly following the derivation of Björk et al.

[10], the absorption and gain as discussed in section 2.8 will be incorporated into the
mirror reflectance. Additionally, T = 1−R (see equation (2.13) together with (2.12)) will
be used to fully incorporate the absorption. The amplitude transmittance of the cavity
xvNote, that the ~k-vectors are given inside the cavity layer, whereas the wavelengths are vacuum

wavelengths.
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near the centre of the DBR stop band then becomesxvi

At
Ai
≈ 1−Re−2ᾱ `eff

cos θc

1− RDBRe
−2ᾱ `eff

cos θc

∣∣∣∣
ω=ωs

ei
2ω
c
nc`c cos θc

= 1− R̄

1− R̄ei2kz`c
, (2.51)

where R̄ := Re−2ᾱ `eff
cos θc . The spectral mode width (full width at half maximum, FWHM )

of this transmittance is [10], expressed in kz,

∆kz = 1− R̄

`c
√

R̄
, (2.52)

where kmz ± 1
2∆kz are the kz values at which At

Ai
has fallen off to half of the value it has at

kz = kmz . By sentence (2.50), this corresponds to a specific spread ∆θ in vacuum angle.
It will be calculated using relation (2.48): First, the spread in wavelength corresponding
to ∆kz is

∆λ = 2π
nc
∣∣∣~k∣∣∣2 ∆k =

λ2
m (0°)

(
1− R̄

)
2πnc`c

√
R̄

. (2.53)

Now, since cavity modes around the normal propagation direction are considered, the ∆λ
corresponding to ∆θ is given by 1

2∆λ = λm (0°)− λm
(

1
2∆θ

)
. So, with equation (2.48), ∆θ

follows to be

∆θ ≈
√

4n2
c∆λ

λm (0°) =

√√√√√2ncλm (0°)
(
1− R̄

)
π`c
√

R̄
. (2.54)

This equation gives the angular FWHM ∆θ of the cavity transmission mode around normal
incidence and for cavity mode wavelengths λm near the centre of the DBR stop band.

The isotropy of the cavity in the x-y-plane dictates that the cavity modes are isotropic,
too. Thus, their spatial extent is characterised by a mode radius d only. To estimate
d, Björk et al. [10] assume that over the whole extent of the mode in the cavity plane,
the electromagnetic field is equally strong, thus resembling a uniformly illuminated circle
with radius d. They use the relation for the angle dependent intensity distribution for
such a circle: I (θ) =

(
2J1(kd sin θ)
kd sin θ

)2
I (0°), where J1 is the first Bessel function of the first

kind. For θ they use the angle ∆θ
2 at which the intensity drops off to half its maximum

xvikz = ncω
c cos θc has been used.
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valuexvii. With that, they deduce the mode radius to be d ≈ λm(0°)
2∆θ , where several numerical

approximations have been used in order to solve for the Bessel and the sine function. Using
equation (2.54), the mode radius can be estimated by

d ≈

√√√√√πλm (0°) `c
√

R̄

8nc
(
1− R̄

) . (2.55)

The parameter 4R̄

(1−R̄)2 is the effectivexviii cavity finesse coefficient and will be denoted by

F̄ . The equation (2.55) improves the expression originally derived by Björk et al. [10] by
taking into account absorption and gain within R̄ and F̄ .

This result for the mode radius is a qualitative result; other derivations lead to similar
results with other numerical factors. For example, another derivation by Björk et al. [10],
utilising the density of modes, leads to

d ≈

√√√√√λm (0°) `c
√

R̄

πnc
(
1− R̄

) . (2.56)

De Martini et al. [11] derive a distance over which a coupling via stimulated emission
of individual places within the cavity can take place, which is a measure for the mode
diameter 2d, and they obtain

d ≈

√√√√√2πλm (0°) `c
√

R̄

ncT
(
1− R̄

) . (2.57)

If both mirrors have a different reflectance (but the centre of the stop band at the
same wavelength), this can be accounted for by setting R̄ =

√
R1
√

R2e
−2ᾱ `eff

cos θc , where
√

Ri = rDBRi |ω=ωs is the reflection coefficient of mirror i for ω = ωs.
Looking at equation (2.55), one can see that the mode radius will grow as R̄ approaches

unity. In real cavities, R̄ is smaller than one due to mirror losses and material absorption.
However, by inducing gain this can be compensated, making the mode radius growing.
Theoretically, if the gain exactly compensates material and mirror losses, i.e. if R̄ = 1⇒
xviiNote: previously, Björk et al. [10] did use the FWHM of the amplitude, now they use the FWHM of

the intensity.
xviiiEffective, because it contains absorption and gain.
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g = α + cos θc
2`eff ln 1

R
, the mode radius will be infinitexix.

d

D

Cavity mode

Pump spot

d D

Cavity modes

Pump spot

(a) (b)

Figure 2.13: Illustration of the spatial extent of the cavity modes in the cavity plane in
the case of (a) the pump spot radius D being smaller than the mode radius
d, (b) D being much larger than d. In the case (b), multiple modes form.
Note that the figures are only a schematic illustration, in reality, especially in
the case (b), the modes will not line up so perfectly and discrete as shown in
the figure. Rather, there will be a superposition of all possible spatial cavity
modes which can be excited by the pump spot. (This figure was adopted
from Enomoto et al. [9].)

However, in real systems, the pump region is never infinitely large, and the considerations
done so far only hold true if the effective reflectivities are homogeneous at least over the
extent of the mode. This is always the case if the mode radius is smaller than the pumped
spot (assuming a homogeneously distributed pump intensity across the pumped area).
In this case, the cavity may be considered as operating with a number of quasimodes
that fill up the pumped area [9]; see figure 2.13 (b). If, on the other hand, the pump
spot size is smaller than the mode radius, there will be only one active quasimode; see
figure 2.13 (a). Under weak pumping, where gain is negligible, the radius of this mode
is estimated by equation (2.55). But if gain is important, the assumptions made for
deriving equation (2.55) no longer hold true since F̄ is no longer homogeneous within one
quasimode. However, the mode radius is between the limits d0 and d∞, where d0 is the

xixNote: ln 1
R ≥ 1 since R ≤ 1.
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mode radius for zero gain over the whole cavity area, and d∞ would be the mode radius if
over the whole cavity the gain is as high as it is inside the pumped spot.

The angular width of the emission is estimated by equation (2.54). This is true as long
as there is only one mode emitting or, if several spatial modes are excited, as long as
they are mutually incoherent. If modes at different places within the cavity plane emit
coherently with respect to each other, interferences of the light emitted from them change
the angular profile.

2.10 Spatial Mode Locking.

When several spatial cavity modes are excited and they have some overlap, they can lock
their mutual phases of the electromagnetic radiation above lasing threshold. This concept
is introduced here.

At the onset of lasing, the gain reaches a level where it fully compensates losses. As
shown before, if the pump power, and so the gain, is homogeneously distributed over the
whole area of a homogeneous cavity, the emission would take place from an infinitely large
area, and the angular width of the emission would vanish for an ideal cavity. However,
in real systems there is no exact homogeneity. Furthermore, in the systems studied here
the spot of excitation is rather small. In this case, gain only exists inside the pumped
region. The integral gain must compensate the integral loss of all regions penetrated
by the lasing mode. “Integral gain”, “integral loss” refers to a weighted integral of the
gain or loss, integrated over the whole cavity area and weighted with the—spatially
dependent—amplitude of the electromagnetic field.
Consider the case where several spatial modes are excited below lasing threshold. The

case of mode growing when going through lasing threshold can also be interpreted as a
phase locking of all the spatial modes: All excited spatial modes (refer to figure 2.13 (b))
maintain their radius, but the phase of the electromagnetic radiation emitted from one
mode gets a fixed value compared to the phase of the radiation emitted from the other
modes. This phase locking of the spatial modes, also called spatial mode locking, leads to
coherent emission from all the modes. If all modes lock in with zero phase difference, then
they emit exactly in the same way and may be considered as one compound mode.
There can also be the case where the sample is excited at several distinct spots. If



2.10 Spatial Mode Locking. 45

the spots are close enough, such that the cavity modes of different spots overlap, they
can also lock their phases above lasing threshold. This phase locking does not imply a
mutual phase difference of zero, but, in fact, any fixed value is possible, depending on the
distribution of the pumping power along the cavity.
The locking of overlapping modes can be explained with stimulated emission coupling

[11]: Photons from one mode can stimulate the emission of photons in the other spatial
mode, and vice versa. With this mechanism, the modes are coupled, and if the stimulated
emission plays the major role for photon emission (as it does in a laser, compared to the
non-lasing case where spontaneous emission prevails), the overlapping spatial modes will
be coherent with respect to each other.

In chapter 5, experiments are presented where the cavity is excited at two small spots
of about 3 µm in diameter. Each of the spots operates in single spatial mode regime (as
depicted in figure 2.13 (a)). The distance s between the spots is a few µm. If s is small
enough, the modes of the two spots interact: Photons from the mode excited at one spot
penetrate into the region of the mode excited by the other spot. This implies that the
photons from one mode induce stimulated emission in the region of the other mode and so,
above lasing threshold, both spatial modes lock to a single laser, meaning that the emission
from both places is coherent. This produces one supermode with a characteristic spatial
and angular emission pattern defined by the interferences of the emission from the two
spots. Depending on s, the phase between the two locked modes is either 0 or π.
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3 Experimental Setup.

This chapter describes the experimental setup used for conducting the experiments presented
in this work.

A sketch of the experimental setup, which is used for the experiments presented in
chapters 4 and 5, is depicted in figure 3.1, together with the coordinate axes used
throughout this work. In the following text, labels like (1), (2) etc. are used, which refer
to correspondingly labelled objects in figure 3.1.
The following light sources can be used:

• A blue emitting diode laser (1), emitting at a wavelength of 407 nm with a nominal
output power of 4mW, operating in continuous wave (cw) mode,

• a green emitting diode laser (2), emitting at a wavelength of 532 nm (frequency
doubled from 1064 nm), operating in pulsed mode with 1 kHz repetition frequency,
1 ns pulse duration, and a nominal energy of 3 µJ per pulse,

• or a halogen lamp (3) for white light, used for adjustment of the sample and focussing
the imaging system.

The light source is selected using flippable mirrors (4), (5). The light of the selected
sources passes two filter wheels (6). These filter wheels have 6 neutral density filters each
and are used to adjust the light intensity. The strength of the filters is measured in optical
density (OD), where ODx means a weakening of the light intensity by a factor of 10−x.
The nominal optical densities of the filters in the filter wheels are OD0.004, OD0.1 to
OD0.5 in steps of OD0.1 for one and OD0.004, OD0.5 to OD2.5 in steps of OD0.5 for
the other filter wheel, allowing to set the total optical density between approximately OD0
and about OD3.0 in steps of approximately OD0.1. Note that the real optical densities
of the filters may differ from the nominal ones. After passing the filter wheels, the light
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goes through an additional grey filter (not depicted in the figure) which filters out about
3
5 of the intensity, and enters an objective (7), which focuses the light onto the sample
(8). The focus can be tuned by moving the objective back and forth. The laser beam has
a diameter of about 3 µm in the focus point of the focussing objective. By detuning the
objective, the size of the illuminated spot on the sample can be increased. The focus point
can be moved in the x-y-plane by some ten µm by laterally shifting the objective. The
sample is mounted on two micrometer stages which can move the sample in the x-y-plane,
allowing to adjust the investigation position on the sample.

Behind the sample, another objective (9) is placed to collect the light from the sample.
The numerical aperture of this objective is 0.65, which allows one to collect light from
angles up to arcsin 0.65 ≈ 40°. The focal plane of this objective is tuned to be on the
investigated plane on the sample. By also adjusting the first objective, the point of
illumination on the sample can be tuned to be in the focus of the second objective. The
image of the light emitted from the sample can be projected in two possible regimes onto
the entrance slit (10) of a spectrometer (11); the regimes will be discussed below. Before,
some details about the spectrometer will be presented:

The spectrometer (Type HR 640 from Jobin Yvon) has a grating (13), which decomposes
the light into its spectral components. This spectrally resolved light (14) is recorded by a
two dimensional CCD chip (15) in the following way: Along one direction, where the chip
has 1024 pixels, the spectral component is detected; along the other direction with 256
pixels the y direction along the entrance slit (10) is recorded. To reduce thermal noise,
the CCD chip is cooled by a water cooled Peltier element. In fact, the entrance slit itself
consists of two adjustable crossed slits, where one slit can crop the light in the x and the
other in the y direction. In the measurement, the slits are opened such that no effects of
the slits are observed in the recorded images, except shielding light that would scatter
inside the spectrometer in an unexpected way. The grating of the spectrometer has 150
lines per millimetre, and it can be rotated to adjust the diffraction order and the spectral
range to be projected onto the CCD chip. The actual rotation setting of the grating can
be read off at the spectrometer and from this reading, the wavelength corresponding to
the CCD pixels can be calculated with an empirical formula. Finally, a computer (16)
controls the cooling and CCD chip and reads out the data from the chip. On the computer,
these tasks are performed by the software WinSpec/32, version 2.5.15.2 from the company
Roper Scientific [13]. The spectrometer itself contains other optical elements not depicted
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and described here, for example lenses to image the plane of the entrance slit onto the
CCD chip.
The two possible regimes of projecting the light emitted from the sample onto the

spectrometer are the following:

1. In the first regime, a lens (12) is placed behind the objective (9) in such a way that
the focal plane of objective (9) is projected onto the entrance slit of the spectrometer.
In this way, the objective and the lens realise a microscope which projects a magnified
image of the x-y-plane of the sample onto the spectrometer. This regime will be
called the near field regime. In the near field regime the non-spectral direction of
the spectrometer image has spatial resolution along the y direction of the sample.

2. In the second regime, another lens (17) is placed behind the objective (9) instead
of lens (12) in order to project the Fourier transform of the sample image onto the
spectrometer entrance slit. This regime will be called the far field regime. In this
regime, different places in the plane, where the entrance slit of the spectrometer
resides, correspond to different emission angles from the sample. Thus, the non-
spectral direction of the spectrometer image has angular resolution for emission into
the x-z-plane.

To directly observe the sample surface for alignment and adjustment, a flippable mirror
(18) can be brought into the beam to direct the light onto a CCD video camera (19). This
camera is connected to a TV monitor (20), which allows the experimenter a live view of
the sample surface. The spatial resolution on the TV monitor is between 0.5 µm and 1 µm.
When recording images with a laser as light source (1) or (2), a filter (21) is inserted

into the optical path behind the sample which cuts off the short wavelength part of the
spectrum, containing the laser wavelength. The emission from the sample, which is at longer
wavelengths, is not affected significantly by the filter. To observe polarisation properties,
a rotatable linear polarisation filter (22) can be placed in front of the spectrometer.
Additionally, to weaken the light emitted from the sample, additional grey filters (23) can
be put in the light path between the sample and the spectrometer. This has to be done
for the lasing measurements at high excitation described in section 5.2.

With this setup, the following resolution can be reached within the spectrometer images:
Spectral: Approx. 1 nm, spatial: Approx. 2 µm, angular: Around 1°. The angular
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and spatial resolution are limited by the pixel resolution of the CCD chip, the spectral
resolution is limited by the optical system.
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4 Measurement of Polarisation
Splitting in planar Microcavities.

A direct measurement of the dependence of polarisation splitting in DBR microcavities on
cavity mode tuning has not been reported so far. In this chapter, experimental studies of
angle and mode tuning dependent polarisation splitting are presented. For the measurements,
a DBR microcavity with a wedge shaped cavity layer, whose thickness increases along one
direction on the sample, is used. This allows one to study different cavity resonant modes
on a single same sample by just varying the position of measurement along the thickness
gradient.
This chapter has three sections. Firstly, the sample and its preparation is described.

Secondly, the way the experiment is conducted is presented. Thirdly, the results are
presented and compared with calculations from transfer matrix theory.

4.1 The Sample.

N N

N

N

Figure 4.1: Chemical structure of CBP (left) and BSB-Cz (right).

The sample was prepared as follows: On a glass substrate, 21 layers, alternating TiO2

and SiO2 with TiO2 as the first and last layer, were evaporated as the bottom DBR.
Then, the cavity layer, consisting of the organic matrix material 4,4’-bis(N-carbazole)-1,1’-
biphenyl (CBP, C36H24N2) in which the dye 4,4’-bis[(N-carbazole)styryl]biphenyl (BSB-Cz,
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λ s5 /2λ s /2

x

Figure 4.2: Sketch of the cross-section of the sample. At the bottom is the glass substrate,
on top of which the first DBR was deposited, followed by the wedge shaped
cavity layer and finished with the second DBR. The sketch is not in scale and
the number of the layers does not coincide with the real number of layers.

C52H36N2) (see figure 4.1) is embedded with a fraction of 2 weight percent as the optically
active material, was grown on top of the first DBR. By using a shutter, the growth rate of
the cavity layer was varied along the sample. On top of the cavity layer, the second DBR
was evaporated with the same parameters as the first mirror.

The wavelength λs of the centre of the DBR stop band was designed to be 450 nm.
Therefore the evaporation parameters were chosen such to obtain an optical thickness
ni`i of each mirror layer of λs

4 = 112.5 nmi. The thickness `c of the cavity layer was
designed to vary along one lateral direction (called the x-direction) from circa 450 nm

2 to
circa 5·450 nm

2 over a distance of 2.25 cm (refer to figure 4.2), leading to a slope of thickness
of d`c

dx
≈ 4 · 10−5. The real values of the minimal and maximal thickness are unknown. This

is not significant, since only places on the cavity well away from the thickness extrema
were investigated.

Figure 4.3 shows the absorption and photoluminescence spectrum of BSB-Cz embedded
into CBP with a fraction of 2 weight percent (CBP:BSB-Cz (2wt%)). The absorption
mainly occurs in CBP, and via Förster energy transfer [14] the excitation energy is non-
radiatively transferred to BSB-Cz, which acts as the emitter of the system. Apparently,
there is only a small overlap between the absorption and the emission spectrum. This
is an advantage for the presented studies because it a) allows the system to be optically
pumped outside the spectral region under investigation, therefore making it easy to block
the excitation light without influencing the luminescent light much, and b) suppresses
internal re-absorption of emitted light.

The host-dye-system CBP:BSB-Cz shows a low amplified stimulated emission threshold,

iAnalysis of the results of optical measurements (see section 4.3) showed that the real λs of the finished
mirrors was around 420 nm and different for different positions on the sample.
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Figure 4.3: Absorption (blue, left) and emission (red, right) spectrum of CBP:BSB-Cz
(2wt%), both in separately normalised units.

0.32 ± 0.05 µJ
cm2 , and a high internal photoluminescence quantum efficiency [15]. It is

therefore a good candidate for an organic laser. Detailed optical characteristics of this
system can be found in a publication by Aimono et al. [15]. This material is new to the
author’s working group. Samples with CBP:BSB-Cz were fabricated in order to test how
the material tends to lase in a microcavityii. Because the samples have a good quality, one
of them is used for the polarisation splitting measurements described in this work.

Cavities with an organic active medium, like the one investigated, are a convenient
tool for studying spectral cavity properties: It is possible to simultaneously select a very
small region of investigation by exciting them with a well-focused laser spot and, due to
their broad emission spectrum, study spectral properties over a wide range of wavelengths.
Furthermore, the fact that the absorption takes place in spectral regions where there
is almost no emission, the pumping can be done at wavelengths where the DBRs are
transparent, while the emission spectrally lies in the DBR stop band.

iiThese experiments were done by other persons from the working group, but they did not observe lasing
yet.
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4.2 The Measurement.

For the measurement, the setup described in chapter 3 is used, utilising the cw diode
laser operating at a wavelength of 407 nm with a power of 4mW (device (1) in figure
3.1). The pump power is decreased with filters far below the lasing threshold of the
investigated microcavity. The pump spot is focused to a spot size of about 3 µm in
diameter. Considering the wedged shape of the cavity layer, the size of the excited area
leads to a variation of the cavity mode wavelength of about 0.12 nm within the excited
volume, therefore the wedge shape is neglected in the evaluation of the results.

4.3 Results.

Figure 4.4 shows in the upper half subfigures ((a), (c), (e) and (g)) experimentally recorded
angle resolved photoluminescence spectra. From these spectra, the wavelength λm (θ) of
the cavity mode can directly be read out. The angle is only approximately calibrated
(allowing for a scaling error of 30%). The splitting of the cavity mode into two modes
is also directly visible. To confirm that the split modes are polarised orthogonally with
respect to each other, a rotatable polarisation filter is inserted in front of the spectrometer,
and images are recorded for different polariser settings. Figure 4.5 shows spectra for
different polariser settings at an observation angle of about 30°. The zero degree cavity
mode shown in that figure has a wavelength of λm (0°) = 482 nm. It clearly proves that
the modes are well orthogonally polarised.

Since the measured spectra only show the long wavelength side of the microcavity stop
band, it is not possible to directly identify the centre wavelength λs of the stop bandiii.
At this point, transfer matrix calculations, carried out using the commercial software
FilmWizard [6] by Scientific Computing International, come into play: The microcavity
is modelled with two DBRs, both made of 21 layers of alternating materials, and a
cavity layer in between. All are placed on a substrate with a refractive index of 1.45
(glass). The transfer matrix calculations are done for transmission. It is assumed that
the photoluminescence spectrum of the cavity resembles its transmission spectrum, which
iiiAlthough the preparation parameters were chosen to produce a cavity with λs (0°) = 450 nm, the

preparation process is not precise enough to guarantee this, therefore the real cavity parameters have
to be extracted from the measurement results. Also, the effective refractive index of the evaporated
layers may differ from the refractive index of the bulk material.
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is the case for an emitter with a spectrally broad emission band as the one used in the
sample.

At the beginning of the transfer matrix calculations, the refractive indices for the cavity
layers are set to values which have been measured in the past at thin films by other
members of the author’s institute. Since the refractive index of evaporated material layers
may differ from sample to sample, they are adjusted in the transfer matrix model later on.

The refractive index n1 of the layers representing TiO2 is n1 ≈ 2.3 in the wavelength
region of interest (around 450 nm). The refractive index decreases towards higher wave-
lengths. For modelling the SiO2 layers, its refractive index is n2 ≈ 1.46 around 450 nm,
also decreasing towards higher wavelengths. The wavelength dependence of the refractive

Figure 4.4: Angle resolved photoluminescence spectra of the cavity at four different cavity
positions. The upper half pictures ((a), (c), (e) and (g)) show the measured
results, the lower half pictures ((b), (d), (f) and (h)) results of corresponding
transfer matrix calculations. The angle is the angle of propagation outside
the sample. Dark paint represents high intensity, white corresponds to zero
intensity.
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Figure 4.5: Polarisation resolved measurement of the split λm (0°) = 482 nm cavity mode
for an emission angle of 30°. Indicated are the relative setting angles of the
polarisation filter.
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indices is parametrised by the equations for a Cauchy material (see the manual [16] for
FilmWizard, page 50). nc, the refractive index of the cavity material, is around 1.8. nc
also decreases with increasing wavelength, but the dependence is explicitly given in a table
of measurement results. Absorption is not accounted for.

The thickness of the mirror layers is set such that the optical thickness ni`i of each layer
is always a quarter of the wavelength λs of the centre of the DBR stop band.
After the model is initialised in this way, the values of λs, n1, n2, and the cavity layer

thickness `c are varied such that the high wavelength edge of the stop band, the transmission
sidebands within the stop band and the cavity mode of the transfer matrix calculations
coincide with the measurement results best. During the variation, the thickness of the
layers is adjusted together with their refractive index in order to keep their optical thickness
constant. Since the sample properties may differ at each position, this optimisation is
repeated for each single measurement. The optimisation is done by hand, by alternating
and interactive adjustment of the wavelengths of the stop band, the cavity mode and the
side bands outside the stop band.

This fitting procedure does not give perfect results. Also, aspects like different thicknesses
of different mirror layers are not modelled. However, the result suffices to qualitatively
extract the cavity thickness and centre of stop band wavelength for each measurement.
The influence of the values of the refractive indices on the fitting results is comparably
small. Thus, after the first good fit, they may stay constant: n1 becomes 2.19 without
wavelength dependence, n2 remains ≈ 1.46 with dispersion as given by the initialisation of
the model, and nc becomes 1.75 without dispersion.

The fits are performed in order to obtain λs for the measurements. It is around 417.5 nm,
but depending on the position on the sample, it usually varies between 410 nm and 425 nm,
sometimes becoming even larger. The highest observed value is 432 nm. With knowing λs,
the detuning Γλ := λm (0°)− λs (0°) is knowniv.

The values ∆λ of the polarisation splitting can directly be read out from the spectrometer
images. Together with the values for Γλ, which are obtained by fitting a transfer matrix
model to the measurement results as explained above, the measured polarisation splitting
can be plotted versus the cavity mode detuning, which allows a comparison with the

ivThe index λ (or just any other available index) is important, because Γλ has—although describing the
same physical property—a functional dependence distinct from Γ, which is defined to be the difference
of the centre of stop band and cavity mode angular frequency.
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theoretical model presented in section 2.6.3 (equation (2.38)), see figure (4.6).
The experimental results for ∆λ are compared with results from transfer matrix cal-

culations and theoretical predictions from equation (2.38). To obtain values for ∆λ

from transfer matrix calculations, the following procedure is applied: For 0° emission
angle, the transmission spectrum is calculated depending on the cavity layer thickness
`c. This gives the dependence of λm (0°) on `c. Additionally, for θ = 30°, the trans-
mission spectrum is calculated for TE- and TM-polarisation depending on the cavity
thickness. This yields λTEm (30°) and λTMm (30°) depending on `c. λs is always set to
417.5 nm, the average value of the experimental results. From this, it is easily calculated
how ∆λ (30°) = λTEm (30°)−λTMm (30°) depends on Γλ = λm (0°)−λs (0°), since the relation
of both quantities to `c is known. Because the dependence on `c is monotonous, ∆λ and
Γλ may be related to each other. For these calculations the refractive indices obtained
from the fitting procedure described above are used.

Figure (4.6) shows the experimental results of the dependence of the polarisation splitting
on the detuning, together with the results from corresponding transfer matrix calculations
and from direct calculations with the approximate formula (2.38). For the calculations
with equation (2.38), the same material parameters as for the transfer matrix calculations
are used. `DBR and ωs are calculated with equations (2.33) and (2.29). The error bars
of the measurement results in figure (4.6) in the ∆λ direction are due to the accuracy in
identifying the peaks of the emission lines in the spectrometer images. The errorbars in
the Γλ direction originate from the accuracy in the fitting procedure used to obtain the λs
values per measurement. The error in identifying λm (0°) in the spectrometer images is
two orders of magnitude lower (∼ 0.4 nm).

The experimental results agree well with the predictions from transfer matrix calculations.
Also, the splitting has the same order as predicted by Panzarini et al. [7, 8]. This
confirms that the polarisation splitting of the cavity modes of the investigated planar DBR
microcavity can be understood within the theoretical framework presented in section 2.6,
namely different `DBR and ωs for TE and TM polarisation and a mismatch of ωm and ωs.
There is no need to account for other effects like anisotropy, as, for example, Stelitano et al.
[17, 18] had to do because they observed five times higher splitting values than predicted
by that theory. The material CBP:BSB-Cz (2wt%) incorporated in the cavity measured
in the present work does not exhibit intrinsic anisotropy.
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Figure 4.6: Polarisation splitting at 30° emission angle depending on the cavity mode
detuning: Measurement results (symbols), transfer matrix calculation (solid
line) and approximated theoretical prediction by Panzarini et al. [7, 8] (equation
(2.38)) (dashed line). The polarisation splitting is plotted versus detuning.
The 0° cavity mode wavelength is only indicated for reference and is for the
experimental results only approximately; that is because the centre of the stop
band varies from measurement point to measurement point, which gives no
definite mapping between Γλ and λm. For making the λm (0°) scale, a fixed
λs (0°) = 417.5 nm is used.
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5 Experimental Proof of spatial Mode
Locking in planar Microcavities.

This chapter presents experiments which prove that for excitation with small pumping
spots, the radius of the cavity modes exceeds the excited area. Furthermore, phase locking
of two spatial cavity modes in the lasing regime is shown. The phase between the two
modes is either 0 or π, depending on the distance of the excitation spots.
This chapter consists of three sections. The first section of this chapter describes the

sample used. The second section introduces a modification of the experimental setup done
in order to get two laser spots for excitation. Furthermore, the way the experiments are
conducted is presented. The third section shows the results and their discussion.

5.1 The Sample.
The sample was prepared similarly to the sample described in section 4.1, with some
changes. As in section 4.1, the mirrors are DBRs with TiO2 and SiO2 as mirror layers
with 11 layers of TiO2 and one layer of SiO2 between each two TiO2 layers. Here, the
centre of the stop band was chosen to be around λs ≈ 620 nm. The cavity layer consists of
a material different from the previous sample: Aluminium-tris(8-hydroxychinolin) (Alq3,
C27H18AlN3O3) as host with two weight percent of 4-(dicyanomethylene)-2-methyl-6-
(4-(dimethylamino)styryl)-4H-pyran (DCM, C19H17N3O) (see figure 5.1 for the chemical
structures) embedded as dye. Absorption and photoluminescence spectra of these materials
are shown in figure 5.2. Both, Alq3 and DCM, can be excited by absorption of light. If Alq3

is excited, it transfers its excitation energy via Förster transfer [14] to DCM, which acts as
emitter. The cavity layer was designed to have a homogeneous thickness of λs

2 = 310 nm.
Pure Alq3 is a favourable material for organic light emitting diodes. It is studied in

[21]. DCM is a laser dye, its properties are presented in [22]. Most importantly, it has a
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high photoluminescence quantum efficiency combined with a good photostability. Alq3 is
a adequate matrix material for DCM, because the absorption curve of DCM overlaps with
the emission curve of Alq3 (see figure 5.2). This makes it possible to transfer the energy
absorbed by Alq3 to the DCM molecules by Förster energy transfer. These properties
make the system Alq3:DCM well suited for lasing experiments like the one presented in
this work.

N

O

N

O

N

O

Al

O

N

N

N

C

C

Figure 5.1: Chemical structure of Alq3 (left) and DCM (right). Schematically (top) and
as three dimensional view (bottom). For Alq3, the three dimensional view
contains two views from different directions. The three dimensional view for
Alq3 is taken from the internet from [19], the one for DCM from the internet
from [20] and was vertically mirrored afterwards.



62 5 Experimental Proof of spatial Mode Locking in planar Microcavities.

Figure 5.2: Absorption and emission spectra of Alq3 and DCM. The blue / dashed lines are
for Alq3, the red / solid lines for DCM. The thick lines represent the absorption,
the thin lines the luminescence spectra. All spectra are individually normalised
to one.
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5.2 The Measurement.

nm)
(532
Laser

To the
filter wheels (6)

Beam
splitter Mirror

Mirror

Beam
blocker

λ
4

plate

(2) (24a) (24c)

(24b)

(24d)

(24e)

(24f)

Figure 5.3: Modification of the experimental setup depicted in figure 3.1 with added beam
splitter.

For the measurement, the setup described in chapter 3 and depicted in figure 3.1 is
used, with a small modification: To get two beams, the mirror (24) in front of the green
532 nm laser (2) is replaced by an arrangement of a beam splitter (24a) and two mirrors
(24b) and (24c), see figure 5.3. The distance between the beam splitter and the mirrors
is approximately the same. In one light path, a λ

4 plate (24f) is introduced to turn the
polarisation of this light by 90°i. This is done to avoid interferences between the two
beams. The two beams excite the sample at two spots (see figure 5.4). On the sample,
the spot centres are separated along the x direction by a distance s. To tune s, mirror
(24b) is adjusted along its vertical axis. For excitation at only one spot, it is possible to
block one or the other beam with the beam blockers (24d) and (24e).

For excitation, the green laser, operating at a wavelength of 532 nm, is used. With the
iWhen the light passes the λ

4 plate once, linear polarisation is transformed to circular polarisation.
After reflection at the mirror (24b), the light passes the λ

4 plate a second time, which then renders
the originally linear polarised light linear polarised again, but now orthogonally with respect to the
previous polarisation direction.
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Figure 5.4: Sketch of the geometry of the sample excitation. The microcavity extends
to infinity in the x-y-direction. The green circular regions are regions of
excitation with a radius D and a distance s between their centres. The
background absorption of the cavity material is α and the gain of the excited
region g.

filter wheels (6), the excitation power is adjusted. When the sample shows lasing, the
intensity emitted into the laser mode and projected onto the spectrometer can get quite
high. To avoid saturating or even damaging the CCD detector, additional grey filters (23)
are inserted between the sample and the spectrometer as needed. The excitation spot
diameter 2D is adjusted to be approximately 3 µm. With this small spot size, the cavity
operates in single spatial mode regime at that spot as depicted in figure 2.13 (a). The
intensity of the two excitation beams is approximately the same.
For different spot distances s, the following measurements are carried out:

• Recording of the near field and the far field emission spectrum for one and two
excitation spots with different excitation intensities,

• measuring the output intensity depending on the excitation intensity (input-output-
curve) for one and two excitation spots.

To reduce degradiation of the sample at high intensities, when measuring the input-output-
characteristics, the input intensity is not increased further after the system passes the
lasing threshold. This input intensity limiting is done because at the same sample position,
up to three measurements are conducted: Input-output-behaviour with excitation at spot
1 only, with excitation at spot 2 only, and with excitation simultaneously at spot 1 and
spot 2.
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When measuring near field and far field emission spectra, the intensities of the spots are
adjusted as follows: When the sample is excited by only one spot, the intensity is chosen
such that the cavity is operating slightly below lasing threshold. On the other hand, when
two spots excite the sample simultaneously, the cavity is in the lasing regime.

Each measurement series is done at a new place on the sample in order to use a virgin,
non degraded area. The drawback of this is that, due to fabrication tolerances, the
cavity parameters are slightly different for each measurement, making the results only
qualitatively comparable.

The measurement of input-output-curves is only supplementary. The aim of this work is
to show spatial phase locking of modes. But the recording of input-output-characteristics
helps to get an understanding of the degradiation of the sample: At the same position,
the input-output-curve is recorded several times. Sample degradiation can be seen in a
shift of the laser threshold towards higher pump energies.

5.3 Results.

The figures 5.5 to 5.10 present spatially and angle resolved emission spectra of the cavity,
excited only in spot 1 (subfigure (a)), only in spot 2 (subfigure (b)) or in both (subfigure
(c)) spotsii. The distance s between the centres of the spots is ca. 5 µm (figures 5.5 and
5.6), ≈ 6.4 µm (figures 5.7 and 5.8) and about 10 µm (figures 5.9 and 5.10).
It is possible to tune the pump intensity of the excitation beam such that there is no

lasing when the sample is excited in only one spot, but it lases when the excitation is
performed in both spots. The lasing transition is visible from the spectrograms (figures
5.5 to 5.10): Under two spot excitation, the emission maximum is spectrally much sharper
(the measured data shows a width of approximately 0.75 nm of the lasing modes, which is
the resolution limit of the experimental setup) and one to two orders of magnitude higher
compared to the excitation with only one beam.
This is understood as follows, assuming that the pump spot radius D is smaller than

the cavity mode radius d: The cavity modes associated with the pump spots spatially
exceed the excited regions and overlap with each other. In this way, photons from mode
1 can stimulate emission in the excited region corresponding to mode 2. This induces

iiThe numbering of the two spots is arbitrary.
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Cavity
mode 2

sd

dD

Spot 1 Spot 2

Figure 5.11: Illustration of a way to qualitatively determine the mode radius d. The
distance sd between the two excitation spots is the distance, at which the
effect of lowered lasing threshold when exciting with two spots instead of
one just disappears for increasing s. To aid clarity, only one cavity mode is
shown.

slightly more photons in mode 2, which in turn slightly increase the stimulated emission
in mode 1, and vice versa. If the system, excited with only one spot, is close enough to
the lasing transition, the increased stimulated emission when switching on the second spot
then drives the cavity through the lasing transition. The two modes are coupled by this
stimulated emission.
The distance sd between the two excitation spots at which this coupling and cross-

stimulation effect is no longer observed can be qualitatively related to the radius d of the
modes as follows:

d ∼ sd −D (5.1)

(See figure 5.11). Of course, this relation is only qualitative, since it assumes a spatially
homogeneous excitation across the pumped area and a cavity mode with homogeneous
field strength along the x-y-direction within the mode radius. However, this formula gives
a very rough estimation for the mode radius.

In the case of s being about 5 µm, and when exciting at two spots, the laser emission is
spatially broadly distributed with its maximum between the excited regions (see figure 5.5).
In the angular distribution, the emission is fairly narrowly peaked around the forward
direction (θ = 0°, see figure 5.6).
For a higher distance between the excitation spots, s ≈ 6.4 µm, the situation is quite

different: The laser emission spatially originates from the regions where the sample is
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Figure 5.12: Spatial cross section through the data of figure 5.7 (c) at the wavelength of
maximal intensity (621.5 nm).

excited and not from in between (see figure 5.7). The light is emitted into two symmetrically
oblique directions (θ ≈ ±2.5°, see figure 5.8), whereas the emission below lasing threshold
is symmetrically distributed around θ = 0°. Also important to mention is that in the
spatially resolved spectrum, the intensity falls off between the emitting spots much steeper
than outside: Inside, to ca. 0.1 of the maximum intensity over around 3.5 µm, outside,
it needs ca. 7 µm for the same fall off. It is not possible to extract precise values for
the intensity slope between the two maxima because they are only seven pixels apart.
Only three to four pixels separate the maxima from the dip in between. Additionally, the
maxima are approximately two to three pixels wide, so that at the end the falloff from the
maxima to the dip is within two to three pixels. This does not allow for a good steepness
calculation. In fact, it can be assumed that, in reality, the intensity between the two spots
is much lower than the minimum intensity in the spectrometer image, which is so “high”
due to the limited resolution. Figure 5.12 shows a cross sectional plot along the x direction
of the emission for the wavelength of maximum intensity (621.5 nm).
For s ≈ 10 µm, the results are qualitatively the same as for s ≈ 6.4 µm. Also here

the laser emission takes place in a direction of θ ≈ 2.5°. Note, that in both cases in the
spectrometer image the distance between the angular maxima is only a few pixels (between
three and four). This resolution does not yield precise values for the angles of maximum
emission.
Lastly, it is noted that, when the sample is excited with two pump beams and the

intensity is lowered such that the sample does not show lasing, the spatial emission is like
the sum of the spatial emissions in the case when the sample is excited at only the one
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and only the other spot individually. Furthermore, the angle resolved emission in this case
is the same as when the sample is excited at only one spot. This is true for all investigated
values of s. Only above lasing threshold, the emission pattern changes into a) a spatially
broad emission centred between the spots and peaked around the normal direction, or b)
an emission with minimised intensity between the spots, and the angular pattern to one
with two oblique peaks.

Interpretation of the Results.

The results can be understood in the following way: When the cavity is operating in the
regime of spontaneous emission, each optically active molecule in the cavity emits (almost)
independently from all the others; the emission is incoherent. Therefore, in this regime, if
the sample is excited at two spots, the intensity of the emitted light is just the sum of the
intensities of the emission when the sample is individually excited at the one or at the
other spot.

If the excitation intensity is chosen such that the sample shows lasing when it is excited
at two spots but no lasing when pumped at only one position, the situation is the following:
Photons emitted from spot 1 stimulate emission of other photons inside spot 1, but also
to some extent inside spot 2. These photons emitted from spot 2 react back to spot 1
by stimulating the emission of further photons thereiii. This small additional stimulation,
compared to the case of pumping at only one spot, can make the difference needed to start
lasing. Since the spontaneous emission couples, the emission from both spots is (partly)
coupled and mutually coherent. So, the intensities of the light emitted from both spots
can no longer be added, instead, the amplitudes have to be added, making interference
possible.

In the case of s ≈ 5 µm (figures 5.5 and 5.6), both spots emit with the same phase (phase
difference φ between both spots zero). That is why both spots form one big superspot and
emit in the forward direction θ = 0°.
The cases of s ≈ 6.5 µm and s ≈ 10 µm can be interpreted with the assumption that

the excited regions are phase locked with a relative phase φ of φ = π. This gives an
antisymmetric distribution of the electromagnetic field amplitude. However, since the

iiiOf course, photons emitted from spot 2 stimulate much more further photons from spot 2 than from
spot 1.
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geometry of the excitation is symmetric, the emission has to be zero between the two spots.
Coherent emission from two spots with a phase difference not equal zero dictates that
the emission maxima are not in the normal direction. For φ = π, the emission maxima
are symmetric around θ = 0°, and in normal direction there is no emission. This can
easily be understood with the same symmetry argument used above. Rigorously, if one
calculates the interference pattern of two equal coherent emitters with a phase difference
of π between them, an emission minimum will be in the forward direction where there is
destructive interference of the light emitted from the two spots.

Input-Output-Curves.

For completeness, figure 5.13 shows the measured input-output-curves for two different
distances between the emission spots, namely s ≈ 8.5 µm and s ≈ 12.25 µm. The input-
output-characteristics show that the lasing does set on a bit earlier when the sample
is excited with two beams, compared to the case of excitation at only one spot. For
s ≈ 8.5 µm, the excitation energy at the onset of the laser transition is around 2 times
larger for one spot excitation compared to the case of two spot excitation. For s ≈ 12.25 µm,
this factor is about 1.5. This difference in the laser threshold should depend on the spot
distance: It should be larger for smaller s because the spatial mode coupling is bigger
when they overlap more. This is not violated in these measurements, but since there are
input-output-curves for only two different values of s, nothing more can be said about this.
To get a rough feeling for the degradiation of the sample, for s ≈ 8.5 µm the measurement
of the input-output-behaviour at two spot excitation is done twice: Once at the beginning,
once after measuring the curves for excitation at spot 1 and at spot 2 individually. The
second measurement shows the lasing onset a bit later than the first one, but it is still
earlier than the onset at excitation with only one beam: About 1.5 times the excitation
energy is needed in the second measurement. This shows that the sample degrades while
the measurement is in progress, but not so much to make the results useless.

Discussion.

The experiments demonstrate that the lasing mode can spatially extend beyond the region
where there is gain. They also demonstrate a phase locking and supermode formation
of individual spatial modes in the lasing regime. The fact that the lasing mode can be
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broader than the excited area is important from the application point of view, because
outside the excited area there is no gain and so the electromagnetic field will be damped.
For constructing a laser with minimised pumping intensity, which is desirable especially
for an electrically pumped organic laser due to the material degradation at higher energy
densities, it is therefore important to excite a broad region, so that the lasing mode is
overlapping as much as possible with regions where there is gain.

Numerical calculations have been done by another member of the research group of this
work. They reproduce the experimental results laid out in this chapter. The calculations
were done with a commercial software which solves Maxwell’s equations in a simplified
framework. The results from this calculations show similar angular and spatial emission
spectra as the experiments.
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6 Conclusion and Outlook.

6.1 Conclusion.
This work consists of two parts. In the first part, the effect of mode tuning on the cavity
mode polarisation splitting was studied, experimentally and theoretically. The organic
host-dye-system CBP:BSB-Cz (2wt%) was used as active medium, while distributed Bragg
reflectors formed the mirrors of the microcavity. The measured sample had a wedge shaped
cavity layer which made it possible to change the spectral cavity mode position within the
stop band by varying the measurement position on the sample.
In the experiment, polarised angle resolved emission spectra from this system were

recorded at different sample positions. Corresponding calculations, utilising the transfer
matrix method, were conducted. At angles different from zero, a splitting of the cavity
resonant mode into two modes could be observed, and it could be shown that these modes
are orthogonally polarised. The splitting of the modes did increase with the angle of
emission and with the detuning of the cavity mode with respect to the DBR stop band.
The experimental results agreed with the corresponding transfer matrix calculations and
approximate analytical calculations.

The effect of polarisation splitting in the studied DBR microcavities could be understood
due to the following effects: The polarisation dependence of the penetration depth of light
into the DBR, the polarisation dependence of the centre frequency of the DBR stop band,
and the mismatch of the cavity mode frequency and the frequency of the stop band centre.
In particular, there was no need to account for material anisotropies.
The second part presented considerations about the in plane size of cavity modes and

about phase locking of different spatial modes. Here, Alq3:DCM (2wt%) was used as the
active medium in the measured microcavity. The sample was excited at two small spots,
about 3 µm in diameter, which were a few µm apart. Excitation at only one of these spots
was also performed.



6.2 Outlook. 79

In the experiment, the excitation energy was chose such that the sample showed lasing
when it was pumped at both places. However, the laser emission vanished when only
one spot was excited. Depending on the distance between the spots, the laser emission
from both spots turned out to either propagate in forward direction and originate from
one broad area, extending over both spots and the space in between, or to propagate in
oblique direction and originate sharply peaked at the two excitation spots with minimised
intensity in between.

The results indicated that the cavity modes were larger than the pump spots, and that
the mode associated with one spot did overlap with the other spot, respectively. Via this
overlap, the emission from one spot could stimulate emission in the other spot and vice
versa. Both modes coupled via stimulated emission, and they locked their phases. The
phase difference was 0 in the case of normal emission and π in the case of oblique emission.

6.2 Outlook.
The values of polarisation splitting in detuned organic microcavities presented in this work
ranged up to 58meV, which corresponds to a photon frequency of 14THz. However, THz
radiation can not directly be produced by this devices because the split up modes are
orthogonally polarised and hence do not mix. With appropriate mixing device, it could be
possible to generate electromagnetic THz radiation utilising the presented polarisation
splitting effect.
For constructing an electrically pumped organic laser, the main obstacle is the low

electron mobility in organic semiconductors. This leads to a high electric pump intensity
needed to start lasing. This intensity would destroy the organics immediately. Therefore,
it is of interest to reduce the pump intensity needed to start lasing. Furthermore, electric
contacts on the cavity are a good absorber for light, so it is desireable to have no contacts
where the laser light escapes. Hence, one important step towards an electrically pumped
organic laser is, besides lowering the laser threshold, to find optimal excitation geometries.
The results presented in this work show that the lasing mode has a spatial extent of

> 10 µm in the cavity plane. Therefore, an interesting experiment would be to excite the
sample with one spot of variable diameter and measure the energy needed to get lasing
depending on the spot size. One thesis is, that, starting from very small spot sizes, the
energy for the lasing threshold first decreases as the spot does more and more overlap with
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the cavity mode, and then increases again as the spot gets larger than the lasing mode.
This is subject to further investigations.

For a quantitative measurement of the spatial extension of cavity modes, the technique
of carefully measuring the input-output-characteristics for varying s for one and two spot
excitation can be used. The idea is that the overlap of the cavity modes manifests in a
shift of the laser threshold to lower pump intensities. A first experiment of this kind was
done by De Martini et al. [11] in 1990.

Another direction to conduct research is structuring of electrodes for electrical pumping.
It could be interesting to study ring electrodes with a radius approximately the same, or a
bit smaller, than the cavity mode radius. The idea is to find a compromise between good
excitation of one cavity mode and avoiding of absorption by electrodes.
Referring to work done by Langner et al. [23, 24], if the cavity is structured in the

x-y-plane, the cavity modes get spatially discretised, and can have shapes with several
minima and maxima of intensity along the x-y-direction. Furthermore, the lasing threshold
is lowered in that case because the light is also confined in the lateral direction. For these
systems, it is interesting to investigate electrodes placed at the minima of the desired
cavity mode.

From the point of fundamental physics, it is interesting to try to understand the results
on spatial mode locking presented in this work in terms of polariton condensates. Many
articles in literature, for example [25] by Lai et al. and [26] by Wouters et al., present similar
results in inorganic microcavities and explain it in terms of Bose-Einstein-condensation of
cavity polaritons.
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Appendix.

Publications.
During this diploma thesis, the article [27] was published in a peer reviewed journal.

A poster showing the main results of this work was shown at an interdisciplinary congress
[28].

List of Symbols.

Symbol: Meaning:
~E Electric field vector.
~B Magnetic field vector.
~E0 Electromagnetic wave electric field amplitude.
~A Electromagnetic wave electric field complex amplitude.
R Right propagating Electromagnetic wave electric field complex amplitude.
L Left propagating Electromagnetic wave electric field complex amplitude.
I Intensity.
P Power.
ω Angular frequency.
λ Wavelength.
~k Wave vector.
~s Unit vector in direction of the wave vector.
t Time. Electric amplitude transmission coefficient.
r Electric amplitude reflection coefficient.
τ Life time.
~r Coordinate vector.
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x, y, z Cartesian coordinates.
θ Angle.
φ Phase.
δ Relative phase; phase shift.
n Refractive index.
µr Relative magnetic permeability.
c Speed of light in vacuum.
~ Reduced Planck constant.
R Power reflectance.
R Modulus of the power reflectance of a DBR.
T Power transmittance.
F Finesse coefficient.
r̄, R̄, R̄, F̄ Effective (gain and loss compensated) reflectances and finesse.
M Transfer matrix.
` Thickness.
m Mode order.
index m Cavity resonant mode.
index s Centre of DBR stop band.
index c Cavity layer.
N Number of layer pairs in a DBR.
∆ Polarisation splitting. Also used as a radical to form uncertainty quantities.
Γ Cavity mode detuning.
α Absorption constant.
g Gain constant.
ᾱ Effective (gain compensated) absorption constant.
β Spontaneous emission coupling factor.
D Pump spot radius.
d Cavity mode radius.
s Distance between excitation spots.
a, b, j Integer index.
i Integer index or imaginary unit.
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